Density functional calculations can fail for want of an accurate exchange-correlation approximation. The energy can instead be extracted from a sequence of density functional calculations of conditional probabilities (CP DFT). Simple CP approximations yield usefully accurate results for two-electron ions, the hydrogen dimer, and the uniform gas at all temperatures.
View Article and Find Full Text PDFUnderstanding the transport of multicomponent fluids through porous medium is of great importance for a number of technological applications, ranging from ink jet printing and the production of textiles to enhanced oil recovery. The process of capillary filling is relatively well understood for a single-component fluid; much less attention, however, has been devoted to investigating capillary filling processes that involve multiphase fluids, and especially nanoparticle-filled fluids. Here, we examine the behavior of binary fluids containing nanoparticles that are driven by capillary forces to fill well-defined pores or microchannels.
View Article and Find Full Text PDFWe investigate the effects of polymer chains and nanoparticles on the deformation of a droplet in shear and extensional flow using computational modeling that accounts for both the solid and fluid phases explicitly. We show that under shear flow, both the nanoparticles and the encapsulated polymers reduce the shear-induced deformation of the droplet at intermediate capillary numbers. At high capillary numbers, however, long polymer chains can induce the breakup of the droplet.
View Article and Find Full Text PDF