There is a need to generate mechanically and thermally robust ionic nanoporous membranes for separation and fuel cell applications. Herein, we report a general approach to the preparation of ionic nanoporous membranes through custom synthesis, self-assembly, and subsequent chemical manipulations of ionic brush block copolymers. We synthesized polynorbornene-based triblock copolymers containing imidazolium cations balanced by counter anions in the central block, side-chain liquid crystalline units, and sidechain polylactide end blocks.
View Article and Find Full Text PDFManipulating molecular and supramolecular interactions within cellulose nanocrystals (CNCs) to introduce different levels of assemblies combined with multiple functionalities is required for the development of degradable smart materials from renewable resources. To attain hierarchical structures and stimuli-responsive properties, a new class of liquid crystalline cellulosic hybrid materials is synthesized. Herein, main-chain rigid-rod-like oxidized cellulose (CNC-COOH) is prepared from a Cellulose Whatman filter paper (Cellulose W.
View Article and Find Full Text PDFReconfigurable arrays of 2D nanomaterials are essential for the realization of switchable and intelligent material systems. Using liquid crystals (LCs) as a medium represents a promising approach, in principle, to enable such control. In practice, however, this approach is hampered by the difficulty of achieving stable dispersions of nanomaterials.
View Article and Find Full Text PDFWe describe the influence of competing self-organizing phenomena on the formation of cholesteric mesophase in liquid crystalline brush block terpolymers (LCBBTs) and liquid crystalline random brush terpolymers (LCRBTs) containing chromonic molecules. A library of LCBBTs and LCRBTs are synthesized using ring-opening metathesis polymerization (ROMP) of norbornene side-chain functionalized monomers comprising cholesteryl mesogen (NBCh), chromonic xanthenone (NBXan), and poly(ethylene glycol) (NBMPEG). Compression molded films of LCRBTs containing chromonic molecules display multilevel hierarchical structure in which cholesteric mesophase co-exists with π-π stacking of the chromonic mesophase along with PEG microphase segregated domains.
View Article and Find Full Text PDFOptically driven ordering transitions are rarely observed in macromolecular systems, often because of kinetic limitations. Here, we report a series of block co-oligomers (BCOs) that rapidly order and disorder at room temperature in response to optical illumination, and the absence thereof. The system is a triblock where rigid azobenzene (Azo) mesogens are attached to each end of a flexible siloxane chain.
View Article and Find Full Text PDFContrast-enhanced X-ray computed tomography plays an important role in cancer imaging and disease progression monitoring. Imaging using radiopaque nanoparticle platforms can provide insights on the likelihood of nanoparticle accumulation and can enable image-guided therapies. Perfluorooctyl bromide (PFOB)-loaded nanocapsules designed for this purpose were stabilized using an in-house synthesized PEGylated polycaprolactone-based copolymer (PEG-b-PCL(Ch)) and compared with commercial polycaprolactone employing a Quality-by-Design approach.
View Article and Find Full Text PDFImmature manufacturing and sub-optimal control of quality attributes hinder the effective translation of nanoformulations for cancer treatment, being partially responsible for the scarce number of products on the market. The effect of the method of preparation on the performance of complex formulations such as bio-responsive nanomedicines needs further understanding. In this study, we investigated the the influence of the method of preparation on the characteristics and bio-responsiveness of doxorubicin-loaded redox-sensitive nanoparticles (DOX-SS-NPs), formed by a biocompatible cholesterol-based amphiphilic block copolymer (PC5MA-SS-PEO).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
The interaction of fields with condensed matter during phase transitions produces a rich variety of physical phenomena. Self-assembly of liquid crystalline block copolymers (LC BCPs) in the presence of a magnetic field, for example, can result in highly oriented microstructures due to the LC BCP's anisotropic magnetic susceptibility. We show that such oriented mesophases can be produced using low-intensity fields (<0.
View Article and Find Full Text PDFWe previously reported the development of an amphiphilic brush-like block copolymer composed of polynorbornene-cholesterol/polyethylene glycol (P(NBCh9-b-NBPEG)) that self-assembles in aqueous media to form long circulating nanostructures capable of encapsulating doxorubicin (DOX-NPs). Biodistribution studies showed that this formulation preferentially accumulates in tumor tissue with markedly reduced accumulation in the heart and other major organs. The aim of the current study was to evaluate the in vivo efficacy and toxicity of DOX containing self-assembled polymer nanoparticles in a mouse xenograft tumor model and compare its effects with the hydrochloride non-encapsulated form (free DOX).
View Article and Find Full Text PDFAmphiphilic brush-like block copolymers composed of polynorbonene-cholesterol/poly(ethylene glycol) (P(NBCh9-b-NBPEG)) self-assembled to form a long circulating nanostructure capable of encapsulating the anticancer drug doxorubicin (DOX) with high drug loading (22.1% w/w). The release of DOX from the DOX-loaded P(NBCh9-b-NBPEG) nanoparticles (DOX-NPs) was steady at less than 2% per day in PBS.
View Article and Find Full Text PDF