Background: Bruton's tyrosine kinase (BTK) is a promising biological target for rheumatoid arthritis treatment. This study examined safety, efficacy, and pharmacokinetics of BMS-986142, an oral, reversible BTK inhibitor. The aim was to compare the efficacy of BMS-986142 with placebo on a background of methotrexate in patients with moderate-to-severe rheumatoid arthritis and inadequate response to methotrexate.
View Article and Find Full Text PDFAims: Branebrutinib (BMS-986195) is a potent, highly selective, oral, small-molecule, covalent inhibitor of Bruton's tyrosine kinase (BTK). This study evaluated safety, pharmacokinetics and pharmacodynamics of branebrutinib in healthy participants.
Methods: This double-blind, placebo-controlled, single- and multiple-ascending dose (SAD; MAD) Phase I study (NCT02705989) enrolled participants into 3 parts: SAD, MAD and JMAD (MAD in first-generation Japanese participants).
Purpose: Sepsis-associated immunosuppression increases hospital-acquired infection and viral reactivation risk. A key underlying mechanism is programmed cell death protein-1 (PD-1)-mediated T-cell function impairment. This is one of the first clinical safety and pharmacokinetics (PK) assessments of the anti-PD-1 antibody nivolumab and its effect on immune biomarkers in sepsis.
View Article and Find Full Text PDFObjectives: To assess for the first time the safety and pharmacokinetics of an antiprogrammed cell death-ligand 1 immune checkpoint inhibitor (BMS-936559; Bristol-Myers Squibb, Princeton, NJ) and its effect on immune biomarkers in participants with sepsis-associated immunosuppression.
Design: Randomized, placebo-controlled, dose-escalation.
Setting: Seven U.
Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues.
View Article and Find Full Text PDFBackground: Reversing immune exhaustion with an anti-PD-L1 antibody may improve human immunodeficiency virus type 1 (HIV-1)-specific immunity and increase clearance of HIV-1-expressing cells.
Methods: We conducted a phase I, randomized, double-blind, placebo-controlled, dose-escalating study of BMS-936559, including HIV-1-infected adults aged >18 to <70 years on suppressive antiretroviral therapy with CD4+ counts >350 cells/μL and detectable plasma HIV-1 RNA by single-copy assay. Data on single infusions of BMS-936559 (0.
The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile.
View Article and Find Full Text PDFThe discovery of a back-up to the hepatitis C virus NS3 protease inhibitor asunaprevir (2) is described. The objective of this work was the identification of a drug with antiviral properties and toxicology parameters similar to 2, but with a preclinical pharmacokinetic (PK) profile that was predictive of once-daily dosing. Critical to this discovery process was the employment of an ex vivo cardiovascular (CV) model which served to identify compounds that, like 2, were free of the CV liabilities that resulted in the discontinuation of BMS-605339 (1) from clinical trials.
View Article and Find Full Text PDFBackground And Aims: This phase-2b study examined the safety and efficacy of an all-oral, interferon-free combination of the NS5A replication complex inhibitor daclatasvir (DCV), the NS3 protease inhibitor asunaprevir (ASV), and the nonnucleoside NS5B polymerase inhibitor beclabuvir (BCV) with or without ribavirin in patients with HCV genotype (GT) 1 infection.
Methods: A total of 187 patients received 12 weeks of DCV 30 mg BID plus ASV 200 mg BID and BCV 150 mg BID (n = 86) or 75 mg BID with (n = 21) or without (n = 80) weight-based ribavirin BID. The primary endpoint was HCV RNA <25 IU/ml at post-treatment week 12 (SVR12).
Background And Objectives: The combination of direct-acting antiviral agents in patients with chronic hepatitis C virus (HCV) infection has demonstrated clinical benefit; however, evaluation of potential drug-drug interactions is required prior to therapy.
Methods: An open-label study assessed the pharmacokinetics and tolerability of the HCV NS5A replication complex inhibitor daclatasvir and the HCV NS3 protease inhibitor asunaprevir when co-administered in healthy subjects. Daclatasvir 60 mg once daily and asunaprevir 600 mg twice daily were dosed for 7 days alone followed by combination dosing for 14 days at 30 mg once daily and 200 mg twice daily, respectively.
BMS-791325 is a nonnucleoside inhibitor of hepatitis C virus (HCV) NS5B polymerase with low-nanomolar potency against genotypes 1a (50% effective concentration [EC50], 3 nM) and 1b (EC50, 7 nM) in vitro. BMS-791325 safety, pharmacokinetics, and antiviral activity were evaluated in a double-blind, placebo-controlled, single-ascending-dose study in 24 patients (interferon naive and experienced) with chronic HCV genotype 1 infection, randomized (5:1) to receive a single dose of BMS-791325 (100, 300, 600, or 900 mg) or placebo. The prevalence and phenotype of HCV variants at baseline and specific posttreatment time points were assessed.
View Article and Find Full Text PDFThe discovery of asunaprevir (BMS-650032, 24) is described. This tripeptidic acylsulfonamide inhibitor of the NS3/4A enzyme is currently in phase III clinical trials for the treatment of hepatitis C virus infection. The discovery of 24 was enabled by employing an isolated rabbit heart model to screen for the cardiovascular (CV) liabilities (changes to HR and SNRT) that were responsible for the discontinuation of an earlier lead from this chemical series, BMS-605339 (1), from clinical trials.
View Article and Find Full Text PDFThe discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK).
View Article and Find Full Text PDFBackground & Aims: Patients with chronic hepatitis C virus (HCV) infection and prior null response (<2 log HCV RNA decline after ⩾ 12 weeks of PegIFN/RBV) have limited options. We evaluated daclatasvir plus once- or twice-daily asunaprevir in non-cirrhotic genotype 1 null responders.
Methods: In this randomized, phase 2a, open-label, 24-week treatment study, 101 patients received daclatasvir (60 mg) once-daily.
Background: All-oral combination therapy is desirable for patients with chronic hepatitis C virus (HCV) infection. We evaluated daclatasvir (an HCV NS5A replication complex inhibitor) plus sofosbuvir (a nucleotide analogue HCV NS5B polymerase inhibitor) in patients infected with HCV genotype 1, 2, or 3.
Methods: In this open-label study, we initially randomly assigned 44 previously untreated patients with HCV genotype 1 infection and 44 patients infected with HCV genotype 2 or 3 to daclatasvir at a dose of 60 mg orally once daily plus sofosbuvir at a dose of 400 mg orally once daily, with or without ribavirin, for 24 weeks.
Background & Aims: The combination of peginterferon and ribavirin with telaprevir or boceprevir is the standard treatment of hepatitis C virus (HCV) genotype 1 infection. However, these drugs are not well tolerated because of their side effects and suboptimal virologic responses. In a phase 2a, open-label study, we examined the safety and efficacy of an interferon-free, ribavirin-free regimen of direct-acting antivirals, comprising daclatasvir (an NS5A replication complex inhibitor), asunaprevir (an NS3 protease inhibitor), and BMS-791325 (a non-nucleoside NS5B inhibitor), in patients with chronic HCV infection.
View Article and Find Full Text PDFAsunaprevir (BMS-650032, ASV) is a potent, selective hepatitis C virus (HCV) NS3 protease inhibitor in clinical evaluation for chronic hepatitis C treatment. ASV pharmacokinetics were evaluated in four single- and multiple-ascending-dose studies in healthy subjects or subjects with HCV genotype 1 infection and in human mass balance and food-effect studies. Median Tmax was 2-4 hours.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
July 2013
Objective: To investigate the safety, tolerability, pharmacokinetics, and antiviral activity of BMS-986001 (a nucleoside reverse transcriptase inhibitor) in treatment-experienced, HIV-1-infected subjects not exposed to antiretroviral treatment in the previous 3 months.
Methods: Thirty-two HIV-1-infected subjects were randomized (3:1) to receive BMS-986001 or placebo once daily for 10 days in this double-blind, placebo-controlled, dose-escalating monotherapy phase IIa study. There were 4 treatment groups (100, 200, 300, and 600 mg, all once daily) of 8 subjects each (BMS-986001, n = 6/placebo n = 2).
A series of highly potent HIV-1 attachment inhibitors with 4-fluoro-6-azaindole core heterocycles that target the viral envelope protein gp120 has been prepared. Substitution in the 7-position of the azaindole core with amides (12a,b), C-linked heterocycles (12c-l), and N-linked heterocycles (12m-u) provided compounds with subnanomolar potency in a pseudotype infectivity assay and good pharmacokinetic profiles in vivo. A predictive model was developed from the initial SAR in which the potency of the analogues correlated with the ability of the substituent in the 7-position of the azaindole to adopt a coplanar conformation by either forming internal hydrogen bonds or avoiding repulsive substitution patterns.
View Article and Find Full Text PDFHepatitis C virus (HCV) protease inhibitors combined with pegylated alfa interferon-ribavirin have demonstrated improved efficacy compared with pegylated alfa interferon-ribavirin alone for the treatment of chronic hepatitis C. Asunaprevir (BMS-650032), a novel HCV NS3 protease inhibitor in clinical development, was evaluated for safety, antiviral activity, and resistance in four double-blind, placebo-controlled, sequential-panel, single- and multiple-ascending-dose (SAD and MAD) studies in healthy subjects or subjects with chronic HCV genotype 1 infection. In SAD studies, subjects (healthy or with chronic HCV infection) were randomized to receive asunaprevir in dose groups of 10 to 1,200 mg or a placebo.
View Article and Find Full Text PDFBackground: Patients with chronic hepatitis C virus (HCV) infection who have not had a response to therapy with peginterferon and ribavirin may benefit from the addition of multiple direct-acting antiviral agents to their treatment regimen.
Methods: This open-label, phase 2a study included an exploratory cohort of 21 patients with chronic HCV genotype 1 infection who had not had a response to previous therapy (i.e.
Unlabelled: The antiviral activity, resistance profile, pharmacokinetics (PK), safety, and tolerability of BMS-790052, a nonstructural protein 5A (NS5A) replication complex inhibitor, were evaluated in a double-blind, placebo-controlled, sequential panel, multiple ascending dose study. Thirty patients with chronic hepatitis C virus (HCV) genotype 1 infection were randomized to receive a 14-day course of BMS-790052 (1, 10, 30, 60, or 100 mg once daily or 30 mg twice daily) or placebo in a ratio of 4:1. The mean maximum decline from baseline in HCV RNA ranged from 2.
View Article and Find Full Text PDFBMS-488043 is a novel and unique oral small-molecule inhibitor of the attachment of human immunodeficiency virus type 1 (HIV-1) to CD4(+) lymphocytes. The antiviral activity, pharmacokinetics, viral susceptibility, and safety of BMS-488043 were evaluated in an 8-day monotherapy trial. Thirty HIV-1-infected study subjects were randomly assigned to sequential, safety-guided dose panels of 800 and 1,800 mg BMS-488043 or a matched placebo in a 4:1 ratio, and the drug was administered every 12 h with a high-fat meal for 7 days and on the morning of day 8.
View Article and Find Full Text PDFSystematic implementation of model-based drug development (MBDD) to drug discovery and development has the potential to significantly increase the rate of medical breakthroughs and make available new and better treatments to patients. An analysis of the strengths, weaknesses, opportunities, and threats (ie, SWOT) was conducted through focus group discussions that included 24 members representing 8 pharmaceutical companies to systematically assess the challenges to implementing MBDD into the drug development decision-making process. The application of the SWOT analysis to the successful implementation of MBDD yielded 19 strengths, 27 weaknesses, 34 opportunities, and 22 threats, which support the following conclusions.
View Article and Find Full Text PDF