The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs.
View Article and Find Full Text PDFThe fovea of the human retina, a specialization for acute and color vision, features a high concentration of cone photoreceptors. A pit on the inner retinal aspect is created by the centrifugal migration of post-receptoral neurons. Foveal cells are specified early in fetal life, but the fovea reaches its final configuration postnatally.
View Article and Find Full Text PDFPurpose: Despite the centrality of the retinal pigment epithelium (RPE) in vision and retinopathy our picture of RPE morphology is incomplete. With a volumetric reconstruction of human RPE ultrastructure, we aim to characterize major membranous features including apical processes and their interactions with photoreceptor outer segments, basolateral infoldings, and the distribution of intracellular organelles.
Methods: A parafoveal retinal sample was acquired from a 21-year-old male organ donor.
Mitochondria are candidate reflectivity signal sources in optical coherence tomography (OCT) retinal imaging. Here, we use deep-learning-assisted volume electron microscopy of human retina and imaging to map mitochondria networks in the outer plexiform layer (OPL), where photoreceptors synapse with second-order interneurons. We observed alternating layers of high and low mitochondrial abundance in the anatomical OPL and adjacent inner nuclear layer (INL).
View Article and Find Full Text PDFIn a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion.
View Article and Find Full Text PDFThe Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside.
View Article and Find Full Text PDFFrom mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort.
View Article and Find Full Text PDFThe human visual pathway is specialized for the perception of fine spatial detail. The neural circuitry that determines visual acuity begins in the retinal fovea, where the resolution afforded by a dense array of cone photoreceptors is preserved in the retinal output by a remarkable non-divergent circuit: cone → midget bipolar interneuron → midget ganglion cell (the "private line"). How the private line develops is unknown; it could involve early specification of extremely precise synaptic connections or, by contrast, emerge slowly in concordance with the gradual maturation of foveal architecture and visual sensitivity.
View Article and Find Full Text PDFPurpose: To quantify organelles impacting imaging in the cell body and intact apical processes of human retinal pigment epithelium (RPE), including melanosomes, lipofuscin-melanolipofuscin (LM), mitochondria, and nuclei.
Methods: A normal perifovea of a 21-year-old white male was preserved after rapid organ recovery. An aligned image stack was generated using serial block-face scanning electron microscopy and was annotated by expert readers (TrakEM, ImageJ).
In the trichromatic primate retina, the "midget" retinal ganglion cell is the classical substrate for red-green color signaling, with a circuitry that enables antagonistic responses between long (L)- and medium (M)-wavelength-sensitive cone inputs. Previous physiological studies showed that some OFF midget ganglion cells may receive sparse input from short (S)-wavelength-sensitive cones, but the effect of S-cone inputs on the chromatic tuning properties of such cells has not been explored. Moreover, anatomical evidence for a synaptic pathway from S cones to OFF midget ganglion cells through OFF midget bipolar cells remains ambiguous.
View Article and Find Full Text PDFSynaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum.
View Article and Find Full Text PDFIn primate retina, "red-green" color coding is initiated when signals originating in long (L) and middle (M) wavelength-sensitive cone photoreceptors interact antagonistically. The center-surround receptive field of "midget" ganglion cells provides the neural substrate for L versus M cone-opponent interaction, but the underlying circuitry remains unsettled, centering around the longstanding question of whether specialized cone wiring is present. To address this question, we measured the strength, sign, and spatial tuning of L- and M-cone input to midget receptive fields in the peripheral retina of macaque primates of either sex.
View Article and Find Full Text PDFThe long-term goal of this research is to understand how retinal ganglion cells that express the photopigment melanopsin, also known as OPN4, contribute to vision in humans and other primates. Here we report the results of anatomical studies using our polyclonal antibody specifically against human melanopsin that confirm and extend previous descriptions of melanopsin cells in primates. In macaque and human retina, two distinct populations of melanopsin cells were identified based on dendritic stratification in either the inner or the outer portion of the inner plexiform layer (IPL).
View Article and Find Full Text PDFIn the primate retina, parasol ganglion cells contribute to the primary visual pathway via the magnocellular division of the lateral geniculate nucleus, display ON and OFF concentric receptive field structure, nonlinear spatial summation, and high achromatic temporal-contrast sensitivity. Parasol cells may be homologous to the alpha-Y cells of nonprimate mammals where evidence suggests that N-methyl-D-aspartate (NMDA) receptor-mediated synaptic excitation as well as glycinergic disinhibition play critical roles in contrast sensitivity, acting asymmetrically in OFF- but not ON-pathways. Here, light-evoked synaptic currents were recorded in the macaque monkey retina in vitro to examine the circuitry underlying parasol cell receptive field properties.
View Article and Find Full Text PDFAnatomical and physiological approaches are beginning to reveal the synaptic origins of parallel ON- and OFF-pathway retinal circuits for the transmission of short (S-) wavelength sensitive cone signals in the primate retina. Anatomical data suggest that synaptic output from S-cones is largely segregated; central elements of synaptic triads arise almost exclusively from the "blue-cone" bipolar cell, a presumed ON bipolar, whereas triad-associated contacts derive primarily from the "flat" midget bipolar cell, a hyperpolarizing, OFF bipolar. Similarly, horizontal cell connectivity is also segregated, with only the H2 cell-type receiving numerous contacts from S-cones.
View Article and Find Full Text PDFRetinal ganglion cells (RGCs), the output neurons of the retina, have axons that project via the optic nerve to diverse targets in the brain. Typically, RGC axons do not branch before exiting the retina and thus do not provide it with synaptic feedback. Although a small subset of RGCs with intraretinal axon collaterals has been previously observed in human, monkey, cat, and turtle, their function remains unknown.
View Article and Find Full Text PDFThe distinctive red-green dimension of human and nonhuman primate color perception arose relatively recently in the primate lineage with the appearance of separate long (L) and middle (M) wavelength-sensitive cone photoreceptor types. "Midget" ganglion cells of the retina use center-surround receptive field structure to combine L and M cone signals antagonistically and thereby establish a "red-green, color-opponent" visual pathway. However, the synaptic origin of red-green opponency is unknown, and conflicting evidence for either random or L versus M cone-selective inhibitory circuits has divergent implications for the developmental and evolutionary origins of trichromatic color vision.
View Article and Find Full Text PDFParallel processing of visual information begins at the first synapse in the retina between the photoreceptors and bipolar cells. Ten bipolar cell types have been previously described in the primate retina: one rod and nine cone bipolar types. In this paper, we describe an 11th type of bipolar cell identified in Golgi-stained macaque retinal whole mount and vertical section.
View Article and Find Full Text PDFThe neural coding of human color vision begins in the retina. The outputs of long (L)-, middle (M)-, and short (S)-wavelength-sensitive cone photoreceptors combine antagonistically to produce "red-green" and "blue-yellow" spectrally opponent signals (Hering, 1878; Hurvich and Jameson, 1957). Spectral opponency is well established in primate retinal ganglion cells (Reid and Shapley, 1992; Dacey and Lee, 1994; Dacey et al.
View Article and Find Full Text PDFIn the primate retina the small bistratified, "blue-yellow" color-opponent ganglion cell receives parallel ON-depolarizing and OFF-hyperpolarizing inputs from short (S)-wavelength sensitive and combined long (L)- and middle (M)-wavelength sensitive cone photoreceptors, respectively. However, the synaptic pathways that create S versus LM cone-opponent receptive field structure remain controversial. Here, we show in the macaque monkey retina in vitro that at photopic light levels, when an identified rod input is excluded, the small bistratified cell displays a spatially coextensive receptive field in which the S-ON-input is in spatial, temporal, and chromatic balance with the LM-OFF-input.
View Article and Find Full Text PDFJ Cataract Refract Surg
March 2009
Purpose: To compare the relative effectiveness of photoentrainment of the circadian rhythm by a blue light-filtering tinted intraocular lens (IOL) (AcrySof Natural SN60), an untinted UV-only filtering IOL (AcrySof SA60), and human lenses in 4 age groups.
Setting: Scientific consultant and Department of Biological Structure and National Primate Research Center, University of Washington, Seattle, Washington, USA.
Methods: Three of 8 action spectra for circadian photoentrainment published from 2001 to 2007 were used to compute the relative effectiveness of the cumulative photon flux absorption from 400 to 600 nm reaching the retina from 4 light sources through the cornea, pupil, and 6 lenses.
In the primate visual system approximately 20 morphologically distinct pathways originate from retinal ganglion cells and project in parallel to the lateral geniculate nucleus (LGN) and/or the superior colliculus. Understanding of the properties of these pathways and the significance of such extreme early pathway diversity for later visual processing is limited. In a companion study we found that the magnocellular LGN-projecting parasol ganglion cells also projected to the superior colliculus and showed Y-cell receptive field structure supporting the hypothesis that the parasol cells are analogous to the well studied alpha-Y cell of the cat's retina.
View Article and Find Full Text PDFThe distinctive parasol ganglion cell of the primate retina transmits a transient, spectrally nonopponent signal to the magnocellular layers of the lateral geniculate nucleus. Parasol cells show well-recognized parallels with the alpha-Y cell of other mammals, yet two key alpha-Y cell properties, a collateral projection to the superior colliculus and nonlinear spatial summation, have not been clearly established for parasol cells. Here, we show by retrograde photodynamic staining that parasol cells project to the superior colliculus.
View Article and Find Full Text PDFThe goal of this work was to describe the interaction of sensitivity regulation and temporal dynamics through the primate retina. A linear systems model was used to describe the temporal amplitude sensitivity at different retinal illuminances. Predictions for the primate H1 horizontal cell were taken as the starting point.
View Article and Find Full Text PDFNegative feedback from horizontal cells to cone photoreceptors is regarded as the critical pathway for the formation of the antagonistic surround of retinal neurons, yet the mechanism by which horizontal cells accomplish negative feedback has been difficult to determine. Recent evidence suggests that feedback uses a novel, non-GABAergic pathway that directly modulates the calcium current in cones. In non-mammalian vertebrates, enrichment of retinal pH buffering capacity attenuates horizontal cell feedback, supporting one model in which feedback occurs by horizontal cell modulation of the extracellular pH in the cone synaptic cleft.
View Article and Find Full Text PDF