It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types.
View Article and Find Full Text PDFA procedure for learning a probabilistic model from mass spectrometry data that accounts for domain specific noise and mitigates the complexity of Bayesian structure learning is presented. We evaluate the algorithm by applying the learned probabilistic model to microorganism detection from mass spectrometry data.
View Article and Find Full Text PDF