Vibrational sum frequency generation can provide valuable structural information at surfaces and buried interfaces. Relating the measured spectra to the complex-valued second-order susceptibility χ(2) is at the heart of the technique and a requisite step in nearly all subsequent analyses. The magnitude and phase of χ(2) as a function of frequency reveal important information about molecules and materials in regions where centrosymmetry is broken.
View Article and Find Full Text PDFThe detection of trace adulterants in opioid samples is an important aspect of drug checking, a harm reduction measure that is required as a result of the variability and unpredictability of the illicit drug supply. While many analytical methods are suitable for such analysis, community-based approaches require techniques that are amenable to point-of-care applications with minimal sample preparation and automated analysis. We demonstrate that surface-enhanced Raman spectroscopy (SERS), combined with a random forest classifier, is able to detect the presence of two common sedatives, bromazolam (0.
View Article and Find Full Text PDFAt charged aqueous interfaces, the second-order nonlinear optical response originates from water molecules within the diffuse part of the electrical double layer, which are ordered by the surface field and from water that additionally experiences chemical and physical interactions with the surface in the Stern layer. These two environments can either reinforce or diminish the overall signal and can be disentangled by varying the coherence length of their interaction with external laser fields. Here, we demonstrate a method in which the angle of incidence is varied to afford a significant change in the coherence length.
View Article and Find Full Text PDFThere is a growing interest in the use of silicone composite insulators for electrical power transmission and distribution applications. However, such materials are susceptible to degradation as they are exposed to electrical and environmental stresses during operating conditions. Therefore, it is crucial to gain a thorough understanding of the degradation mechanism through changes in the material structure that may provide insight into potential failures in the electrical grid.
View Article and Find Full Text PDFIntroduction: Increasingly, Fourier-transform infrared (FTIR) spectroscopy is being used as a harm reduction tool to provide people who use drugs real-time information about the contents of their substances. However, FTIR spectroscopy has been shown to have a high detection limit for fentanyl and interpretation of results by a technician can be subjective. This poses concern, given that some synthetic opioids can produce serious toxicity at sub-detectable levels.
View Article and Find Full Text PDFMeasurement techniques that probe the second-order susceptibility, such as second-harmonic and sum-frequency generation, are recognized for their ability to study environments with broken centrosymmetry. As a result, they serve as reporters of molecules at surfaces because the second-order susceptibility is often zero in the adjacent bulk media. Although the signals measured in such experiments carry unique information about the interfacial environment, the challenge is to disentangle properties related to the electronic structure as they are wrapped up in the orientation distribution.
View Article and Find Full Text PDFCarfentanil is one of the most potent synthetic opioids ever developed, with an estimated analgesic potency approximately 20-100 times that of fentanyl and 10,000 times that of morphine. Carfentanil has been appearing in the illicit drug supply in many regions and has been linked to fatal overdose events. A subset of 59 street drug samples obtained in Victoria, B.
View Article and Find Full Text PDFWe describe a basic theoretical treatment of how film-substrate and substrate-environment (air, water, and solution) interfaces can be selectively probed by controlling the film thickness and beam angles in a visible-infrared sum frequency generation experiment. In this model, we also account for the unique interfacial environment that may have optical properties that differ from the adjacent bulk phases. We see that this affects components of the electric field that are perpendicular to the surface such as when p-polarized light is used.
View Article and Find Full Text PDFThe nanoscale region immediately adjacent to surfaces, although challenging to probe, is directly responsible for local chemical and physical interactions between a material and its surroundings. Cell-surface contacts are mediated by a combination of electrostatic and acid-base interactions that alter the local environment over time. In this study, a label-free vibrational probe with a nanometer length scale reveals that the electrostatic potential at a silica surface gradually increases in the presence of bacteria in solution.
View Article and Find Full Text PDFWe demonstrate a straightforward method by which a commonly available reference sample such as water can be used to calibrate an attenuated total internal reflection infrared absorbance measurement in order to account for the polarization of the beam incident on the internal reflecting element, and the spread of angles about the nominal angle of incidence. This enables quantitative comparison of attenuated total reflection-derived absorbance data with spectra calculated from optical constants. We then apply this calibration to the measurement of temperature-dependent absorption spectra of a polydimethylsiloxane sample.
View Article and Find Full Text PDFBackground: In British Columbia, Canada, illicit opioids have been increasingly combined with etizolam, a benzodiazepine analog, that continues to challenge popular portable drug checking technologies as it is often present in low concentrations as a result of its high potency. An unknown combination of opioids and benzodiazepines may have dangerous consequences due to unpredictable dosing, increased respiratory depression, and complicated overdose response measures.
Methods: Surface-enhanced Raman spectroscopy (SERS) using a portable Raman spectrometer is used to establish a univariate model for the detection of etizolam in opioid drug mixtures (n=100) obtained from the Vancouver Island Drug Checking Project, where the presence of etizolam has been determined using paper-spray mass spectrometry.
Background: Drug checking uses chemical analytical technologies to analyze drugs from the unregulated market to reduce substance use-related risks. We aim to examine the frequency of third party use of a community drug checking service to explore the potential for harm reduction to extend beyond the individual into the community, increase service accessibility, and to contribute to upstream interventions in the supply.
Methods: Over 31 months, data were collected from a point-of-care drug checking service operated in Victoria, Canada.
Background: There has been a recent increase in adulteration of opioids with low concentration actives such as fentanyl analogues and benzodiazepines. As drug checking projects using vibrational spectroscopy continue to seek confirmatory lab-based testing, the concern and reality of missing these potentially harmful substances in point-of-care testing is prevalent.
Methods: A portable GC-MS was used to analyze select opioid samples acquired at a drug checking service in Victoria, Canada (n=59).
Resistance to algae contamination is an important characteristic of insulators used in overhead power distribution in coastal environments. It is therefore important to understand the parameters governing algae adhesion onto polymer insulator materials such as silicone. Flow cell-based shear experiments were conducted in order to characterize the adhesion strength of algae onto polydimethylsiloxane surfaces, comparing fresh polymer substrates with those that have been soaked in water and saline solutions for 1 month.
View Article and Find Full Text PDFA new method is proposed to analyze Doubly Resonant infrared-visible Sum-Frequency Generation (DR-SFG) spectra. Based on the transform technique, this approach is free from assumptions about vibronic modes, energies, or line widths and accurately captures through the overlap spectral function all required aspects of the vibronic structure from simple experimental linear absorption spectra. Details and implementation of the method are provided along with three examples treating rhodamine thin films about one monolayer thick.
View Article and Find Full Text PDFDetails of the design and implementation of an open-source platform for studying the adhesion of cells attached to solid substrata are provided. The hardware is based on a laser-cut flow channel connected to a programmable syringe pump. The software automates all aspects of the flow rate profile, data acquisition and image analysis.
View Article and Find Full Text PDFWe illustrate a technique by which heterodyne-detected sum-frequency generation spectroscopy is performed at multiple angles of incidence in order to decompose components of the second-order susceptibility tensor when all beams are polarized parallel to the plane of incidence. As an illustration, we study the non-vibrationally resonant gold response. We benchmark our results by comparing with measurements obtained in a polarization scheme that isolates a single element of the susceptibility tensor.
View Article and Find Full Text PDFWe outline a method by which the surface preference of a species in a multicomponent mixture may be obtained using surface-specific visible-infrared sum frequency generation (SFG) spectroscopy combined with bulk infrared absorption and/or Raman data. In general, the problem is complicated by the fact that the SFG signal is a function of both the surface coverage and the structure of the molecules. Two-dimensional correlation analysis can be used to reveal which spectral features are changing synchronously, that is, in phase with each other, and which ones are evolving in a manner that is phase-shifted by 90° (asynchronous correlation) as a function of the bulk composition.
View Article and Find Full Text PDFBacterial adhesion and biofilm formation on abiotic surfaces are important phenomena with industrial, environmental, and biological relevance. Recent findings using vibrational spectroscopy to study () K12 adhesion on silica indicated that interfacial water signals are linked to changes at the surface in the presence of bacteria. Although such techniques provide a unique glimpse into the surface microenvironment, the origin of the features tracked by the water signals remains to be identified.
View Article and Find Full Text PDFThe structure of water adjacent to silica is sensitive to the degree of deprotonation of surface silanol groups. As a result, close inspection of signals originating from these water molecules can be used to reveal the surface charge density. We have used nonlinear vibrational spectroscopy of the water O-H stretching band over a temperature range of 10-75 °C to account for the increase in surface potential from deprotonation.
View Article and Find Full Text PDFPolymer coatings offer a means to modulate the adsorption of molecules onto solid surfaces by offering a surface functionality, charge, roughness, and hydrophobicity that is different from the underlying substrate. One application is to provide anti-fouling functions for metal surfaces. Understanding solvent-surface interactions is an essential component to gaining mechanistic insight into the adsorption process.
View Article and Find Full Text PDFVibrational sum-frequency generation (SFG) spectroscopy can provide valuable qualitative and quantitative information about molecular species at surface and buried interfaces. For example, the resonance frequency of a particular chemical function group is revealing of the surface environment, especially when compared to what is observed in bulk IR absorption or Raman scattering spectra. Furthermore, the amplitude of the mode can be related to the molecular orientation, providing a detailed quantitative account of the surface structure.
View Article and Find Full Text PDFAcc Chem Res
September 2018
Understanding the adsorption of molecules onto surfaces is integral to a wide variety of fields with scientific, engineering, and industrial applications. The surface-adsorbed structure is governed by the nature of the molecule, surface characteristics, and solution environment. There are therefore three critical interactions that govern adhesion: solvent-analyte, substrate-analyte, and substrate-solvent.
View Article and Find Full Text PDFSurface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions.
View Article and Find Full Text PDF