Publications by authors named "Dennis H Passe"

Introduction: Exercise-associated muscle cramping (EAMC) is a poorly understood problem that is neuromuscular in origin. Ingestion of transient receptor potential (TRP) channel agonists has been efficacious in attenuating electrically induced muscle cramps. This study examines the effect of TRP agonist ingestion on voluntarily induced EAMC and motor function.

View Article and Find Full Text PDF

The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field.

View Article and Find Full Text PDF

Background: There is a lack of consensus regarding the optimal range of carbohydrate (CHO) ingestion rates recommended for endurance athletes.

Purpose: This study investigated the relationship between CHO dose and cycling time trial performance to identify an optimal range of CHO ingestion rates for endurance performance.

Methods: Fifty-one cyclists and triathletes (28 ± 7 yr, mean ± SD) across four research sites completed four trials.

View Article and Find Full Text PDF

The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests.

View Article and Find Full Text PDF

It is well established that carbohydrate (CHO) administration increases performance during prolonged exercise in humans and animals. The mechanism(s), which could mediate the improvement in exercise performance associated with CHO administration, however, remain(s) unclear. This review focuses on possible underlying mechanisms that could explain the increase in exercise performance observed with the administration of CHO during prolonged muscle contractions in humans and animals.

View Article and Find Full Text PDF

Endurance performance and fuel selection while ingesting glucose (15, 30, and 60 g/h) was studied in 12 cyclists during a 2-h constant-load ride [approximately 77% peak O2 uptake] followed by a 20-km time trial. Total fat and carbohydrate (CHO) oxidation and oxidation of exogenous glucose, plasma glucose, glucose released from the liver, and muscle glycogen were computed using indirect respiratory calorimetry and tracer techniques. Relative to placebo (210+/-36 W), glucose ingestion increased the time trial mean power output (%improvement, 90% confidence limits: 7.

View Article and Find Full Text PDF

This study investigated whether different beverage carbohydrate concentration and osmolality would provoke gastrointestinal (GI) discomfort during intermittent, high-intensity exercise. Thirty-six adult and adolescent athletes were tested on separate days in a double-blind, randomized trial of 6 % and 8 % carbohydrate-electrolytes (CHO-E) beverages during four 12-min quarters (Q) of circuit training that included intermittent sprints, lateral hops, shuttle runs, and vertical jumps. GI discomfort and fatigue surveys were completed before the first Q and immediately after each Q.

View Article and Find Full Text PDF

Palatability and voluntary intake of 4 beverages commonly available to athletes were compared in a laboratory exercise protocol designed to mimic aerobic training or competitive conditions in which limited time is available for drinking. Diluted orange juice (DOJ), homemade 6% carbohydrate-electrolyte sports beverage (HCE), commercially available 6% carbohydrate-electrolyte sports beverage (CCE), and water (W) were tested. Fifty adult triathletes and runners (34 males, 16 females) exercised for 75 min at 80-85% of age-predicted heart rate, during which time they were given brief access (60 s) to one of the beverages after 30 min and 60 min of exercise.

View Article and Find Full Text PDF