Leucine-rich repeat-containing G-protein-coupled receptor (LGR5) and LGR6 mark epithelial stem cells in normal tissues and tumors. They are expressed by stem cells in the ovarian surface and fallopian tube epithelia from which ovarian cancer arises. High-grade serous ovarian cancer is unique in expressing unusually high levels of LGR5 and LGR6 mRNA.
View Article and Find Full Text PDFLGR5 and LGR6 mark epithelial stem cells in many niches including the ovarian surface and fallopian tube epithelia from which ovarian cancer arises. Human ovarian cancers express these receptors at high levels and express one of their ligands, RSPO1, at levels uniquely higher than all other tumor types except mesothelioma. Reasoning that these receptors are also important to tumor stem cells, arming the LGR binding domain of RSPO1 with a cytotoxin may permit depletion of the tumor stem cells.
View Article and Find Full Text PDFGlucocorticoids (GCs) are excellent anti-inflammatory drugs but are dose-limited by on-target toxicity. We sought to solve this problem by delivering GCs to immune cells with antibody-drug conjugates (ADCs) using antibodies containing site-specific incorporation of a non-natural amino acid, novel linker chemistry for in vitro and in vivo stability, and existing and novel glucocorticoid receptor (GR) agonists as payloads. We directed fluticasone propionate to human antigen-presenting immune cells to afford GR activation that was dependent on the targeted antigen.
View Article and Find Full Text PDFIn an effort to examine the utility of antibody-drug conjugates (ADCs) beyond oncology indications, a novel phosphate bridged Cathepsin B sensitive linker was developed to enable the targeted delivery of glucocorticoids. Phosphate bridging of the Cathepsin B sensitive linkers allows for payload attachment at an aliphatic alcohol. As small molecule drug-linkers, these aqueous soluble phosphate containing drug-linkers were found to have robust plasma stability coupled with rapid release of payload in a lysosomal environment.
View Article and Find Full Text PDFAs part of an effort to examine the utility of antibody-drug conjugates (ADCs) beyond oncology indications, a novel pyrophosphate ester linker was discovered to enable the targeted delivery of glucocorticoids. As small molecules, these highly soluble phosphate ester drug linkers were found to have ideal orthogonal properties: robust plasma stability coupled with rapid release of payload in a lysosomal environment. Building upon these findings, site-specific ADCs were made between this drug linker combination and an antibody against human CD70, a receptor specifically expressed in immune cells but also found aberrantly expressed in multiple human carcinomas.
View Article and Find Full Text PDFHumanized monoclonal antibodies (mAbs) are the fastest growing class of biological therapeutics that are being developed for various medical indications, and more than 30 mAbs are already approved and in the market place. Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important biological function attributed to the mechanism of action of several therapeutic antibodies, particularly oncology targeting mAbs. The ADCC assay is a complicated and highly variable assay.
View Article and Find Full Text PDF