Publications by authors named "Dennis F Gardner"

We experimentally apply incoherent Fourier ptychography to enhance the resolution of recorded images by projecting known, uncorrelated, random patterns at high speed onto 3D moving and distant objects. We find that the resolution enhancement factor can be greater than 2, depending on the projection and camera optics.

View Article and Find Full Text PDF

Speckle correlation imaging offers the ability to see objects through diffusive materials and around corners. Imaging self-illuminating thermal objects in non-line-of-sight scenarios is of particular interest. Here, using bispectrum and phase retrieval methods, we demonstrate speckle correlation imaging of mid-infrared objects through diffusers and around corners at resolutions near the diffraction limit.

View Article and Find Full Text PDF

The Shack-Hartmann wavefront sensor (SH-WFS) is known to produce incorrect measurements of the wavefront gradient in the presence of non-uniform illumination. Moreover, the most common least-squares phase reconstructors cannot accurately reconstruct the wavefront in the presence of branch points. We therefore developed the intensity/slopes network (ISNet), a deep convolutional-neural-network-based reconstructor that uses both the wavefront gradient information and the intensity of the SH-WFS's subapertures to provide better wavefront reconstruction.

View Article and Find Full Text PDF

A scattering layer is usually considered an obstacle to imaging. However, using speckle correlation imaging techniques, the scattering layer effectively acts as a lens. To date, the speckle correlation imaging method has been limited to imaging sparse samples.

View Article and Find Full Text PDF

Imaging charge, spin, and energy flow in materials is a current grand challenge that is relevant to a host of nanoenhanced systems, including thermoelectric, photovoltaic, electronic, and spin devices. Ultrafast coherent x-ray sources enable functional imaging on nanometer length and femtosecond timescales particularly when combined with advances in coherent imaging techniques. Here, we combine ptychographic coherent diffractive imaging with an extreme ultraviolet high harmonic light source to directly visualize the complex thermal and acoustic response of an individual nanoscale antenna after impulsive heating by a femtosecond laser.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers achieved 3D coherent diffractive imaging (CDI) of gold/platinum core-shell nanoparticles with a high spatial resolution of 6.1 nm and noted elemental specificity.
  • Using intense x-ray free electron laser pulses, they reconstructed the 3D electron density of 34 nanoparticle structures from single-shot diffraction patterns.
  • They implemented a super-resolution technique, allowing them to accurately determine the sizes of the Au core and Pd shell, along with a 3D elemental distribution measurement within the nanoparticles, and validated this approach through simulations of noisy diffraction patterns.
View Article and Find Full Text PDF

Colloidal crystals with specific electronic, optical, magnetic, vibrational properties, can be rationally designed by controlling fundamental parameters such as chemical composition, scale, periodicity and lattice symmetry. In particular, silica nanospheres -which assemble to form colloidal crystals- are ideal for this purpose, because of the ability to infiltrate their templates with semiconductors or metals. However characterization of these crystals is often limited to techniques such as grazing incidence small-angle scattering that provide only global structural information and also often require synchrotron sources.

View Article and Find Full Text PDF

The ability to record large field-of-view images without a loss in spatial resolution is of crucial importance for imaging science. For most imaging techniques however, an increase in field-of-view comes at the cost of decreased resolution. Here we present a novel extension to ptychographic coherent diffractive imaging that permits simultaneous full-field imaging of multiple locations by illuminating the sample with spatially separated, interfering probes.

View Article and Find Full Text PDF

We report a proof-of-principle demonstration of a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. This scheme is enabled by combining ptychographic information multiplexing (PIM) with a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and a more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both microscopy and spectroscopy aspects.

View Article and Find Full Text PDF

We demonstrate quantitative, chemically specific imaging of buried nanostructures, including oxidation and diffusion reactions at buried interfaces, using nondestructive tabletop extreme ultraviolet (EUV) coherent diffractive imaging (CDI). Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither visible microscopy nor atomic force microscopy can image the buried interface. Short wavelength high harmonic beams can penetrate the aluminum layer, yielding high-contrast images of the buried structures.

View Article and Find Full Text PDF

Scanning electron microscopy and atomic force microscopy are well-established techniques for imaging surfaces with nanometer resolution. Here we demonstrate a complementary and powerful approach based on tabletop extreme-ultraviolet ptychography that enables quantitative full field imaging with higher contrast than other techniques, and with compositional and topographical information. Using a high numerical aperture reflection-mode microscope illuminated by a tabletop 30 nm high harmonic source, we retrieve high quality, high contrast, full field images with 40 nm by 80 nm lateral resolution (≈1.

View Article and Find Full Text PDF

We demonstrate the first general tabletop EUV coherent microscope that can image extended, non-isolated, non-periodic, objects. By implementing keyhole coherent diffractive imaging with curved mirrors and a tabletop high harmonic source, we achieve improved efficiency of the imaging system as well as more uniform illumination at the sample, when compared with what is possible using Fresnel zone plates. Moreover, we show that the unscattered light from a semi-transparent sample can be used as a holographic reference wave, allowing quantitative information about the thickness of the sample to be extracted from the retrieved image.

View Article and Find Full Text PDF

In this work, we demonstrate an improved method for iterative phase retrieval with application to coherent diffractive imaging. By introducing additional operations inside the support term of existing iterated projection algorithms, we demonstrate improved convergence speed, higher success rate and, in some cases, improved reconstruction quality. New algorithms take a particularly simple form with the introduction of a generalized projection-based reflector.

View Article and Find Full Text PDF

We extend coherent diffraction imaging (CDI) to a high numerical aperture reflection mode geometry for the first time. We derive a coordinate transform that allows us to rewrite the recorded far-field scatter pattern from a tilted object as a uniformly spaced Fourier transform. Using this approach, FFTs in standard iterative phase retrieval algorithms can be used to significantly speed up the image reconstruction times.

View Article and Find Full Text PDF