Publications by authors named "Dennis Eickelbeck"

Response gain is a crucial means by which modulatory systems control the impact of sensory input. In the visual cortex, the serotonergic 5-HT receptor is key in such modulation. However, due to its expression across different cell types and lack of methods that allow for specific activation, the underlying network mechanisms remain unsolved.

View Article and Find Full Text PDF

Opn7b is a non-visual G protein-coupled receptor expressed in zebrafish. Here we find that Opn7b expressed in HEK cells constitutively activates the G pathway and illumination with blue/green light inactivates G protein-coupled inwardly rectifying potassium channels. This suggests that light acts as an inverse agonist for Opn7b and can be used as an optogenetic tool to inhibit neuronal networks in the dark and interrupt constitutive inhibition in the light.

View Article and Find Full Text PDF

Optogenetics uses light-sensitive proteins, so-called optogenetic tools, for highly precise spatiotemporal control of cellular states and signals. The major limitations of such tools include the overlap of excitation spectra, phototoxicity, and lack of sensitivity. The protein characterized in this study, the Japanese lamprey parapinopsin, which we named UVLamP, is a promising optogenetic tool to overcome these limitations.

View Article and Find Full Text PDF

The primary goal of optogenetics is the light-controlled noninvasive and specific manipulation of various cellular processes. Herein, we present a hybrid strategy for targeted protein engineering combining computational techniques with electrophysiological and UV/visible spectroscopic experiments. We validated our concept for channelrhodopsin-2 and applied it to modify the less-well-studied vertebrate opsin melanopsin.

View Article and Find Full Text PDF

The signal specificity of G protein-coupled receptors (GPCRs) including serotonin receptors (5-HT-R) depends on the trafficking and localization of the GPCR within its subcellular signaling domain. Visualizing traffic-dependent GPCR signals in neurons is difficult, but important to understand the contribution of GPCRs to synaptic plasticity. We engineered CaMello (Ca-melanopsin-local-sensor) and CaMello-5HT for visualization of traffic-dependent Ca signals in 5-HT-R domains.

View Article and Find Full Text PDF

Bioluminescence is a fascinating phenomenon and can be found in many different organisms including fish. It has been suggested that bioluminescence is used for example for defense, prey attraction, and for intraspecific communication to attract for example sexual partners. The flashlight fish, Anomalops katoptron (A.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) represent the major protein family for cellular modulation in mammals. Therefore, various strategies have been developed to analyze the function of GPCRs involving pharmaco- and optogenetic approaches [1, 2]. However, a tool that combines precise control of the activation and deactivation of GPCR pathways and/or neuronal firing with limited phototoxicity is still missing.

View Article and Find Full Text PDF