Publications by authors named "Dennis Demont"

Epidermal growth factor receptor (EGFR) inhibitors have clinical utility in the treatment of non-small cell lung cancer (NSCLC) patients. Despite encouraging clinical efficacy with these agents, many patients develop resistance due to sensitizing (or activating) mutations ultimately leading to disease progression. In the majority of the cases, this resistance is due to the T790M mutation and frequently coexisting L858R.

View Article and Find Full Text PDF

Bruton tyrosine kinase (BTK) is an important target in oncology and (auto)immunity. Various BTK inhibitors have been approved or are currently in clinical development. A novel BTK inhibitor series was developed starting with a quinazoline core.

View Article and Find Full Text PDF

Several small-molecule Bruton tyrosine kinase (BTK) inhibitors are in development for B cell malignancies and autoimmune disorders, each characterized by distinct potency and selectivity patterns. Herein we describe the pharmacologic characterization of BTK inhibitor acalabrutinib [compound 1, ACP-196 (4-[8-amino-3-[(2)-1-but-2-ynoylpyrrolidin-2-yl]imidazo[1,5-]pyrazin-1-yl]--(2-pyridyl)benzamide)]. Acalabrutinib possesses a reactive butynamide group that binds covalently to Cys481 in BTK.

View Article and Find Full Text PDF

MK2 kinase is a promising drug discovery target for the treatment of inflammatory diseases. Here, we describe the discovery of novel MK2 inhibitors using X-ray crystallography and structure-based drug design. The lead has in vivo efficacy in a short-term preclinical model.

View Article and Find Full Text PDF

Substituted 6-amino-4-phenyl-tetrahydroquinoline derivatives are described that are antagonists for the G(s)-protein-coupled human follicle-stimulating hormone (FSH) receptor. These compounds show high antagonistic efficacy in vitro using a CHO cell line expressing the human FSH receptor. Antagonist 10 also showed a submicromolar IC(50) in a more physiologically relevant rat granulosa cell assay and was found to significantly inhibit follicle growth and ovulation in an ex vivo mouse model.

View Article and Find Full Text PDF