Acta Vet Scand
February 2015
Infrared temperature measurement equipment (IRTME) is gaining popularity as a diagnostic tool for evaluating human and animal health. It has the prospect of reducing subject stress and disease spread by being implemented as an automatic surveillance system and by a quick assessment of skin temperatures without need for restraint or contact. This review evaluates studies and applications where IRTME has been used on pigs.
View Article and Find Full Text PDFSince variations in annular motion/shape and papillary muscle displacement have been observed in studies of dilated cardiomyopathy and ischemic mitral regurgitation, the objective of this study was to investigate the effects of annular motion/flexibility and papillary muscle displacement on chordal force and mitral valve function. Six human mitral valves were studied in a left heart simulator using a flexible annular model. Mitral flow, trans-mitral pressure and chordae tendineae tension were monitored online in normal and pathophysiologic papillary muscle positions.
View Article and Find Full Text PDFBackground And Aim Of The Study: Mitral insufficiency, a common and morbid pathology, has been related to topological changes in the left ventricle. These changes may affect mitral leaflet coaptation by displacing the tips of the papillary muscles (PMs), subsequently changing the tension distribution on the chordae tendineae. Therefore, further understanding of the effects of PM displacement on chordal force distribution is required.
View Article and Find Full Text PDFStudies have concluded that the shape of the human mitral valve annulus is a three-dimensional saddle. The objective of this study was to investigate the effects of a saddle shaped annulus on chordal force distribution and mitral valve function. Eleven human mitral valves were studied in a physiological left heart simulator with a variable shaped annulus (flat versus saddle).
View Article and Find Full Text PDF