Objective: Activation of the cyclooxygenase (COX) pathway with secondary neurovascular deficits are implicated in the pathogenesis of experimental diabetic peripheral neuropathy (DPN). The aim of this study was to explore the interrelationships between hyperglycemia, activation of the COX-2 pathway, and oxidative stress and inflammation in mediating peripheral nerve dysfunction and whether COX-2 gene inactivation attenuates nerve fiber loss in long-term experimental diabetes.
Research Design And Methods: Motor and sensory digital nerve conduction velocities, sciatic nerve indexes of oxidative stress, prostaglandin content, markers of inflammation, and intraepidermal nerve fiber (IENF) density were measured after 6 months in control and diabetic COX-2-deficient (COX-2(-/-)) and littermate wild-type (COX-2(+/+)) mice.
In diabetes, overexpression of aldose reductase (AR) and consequent glucose-induced impairment of antioxidant defense systems may predispose to oxidative stress and the development of diabetic complications, but the mechanisms are poorly understood. Taurine (2-aminoethanesulfonic acid) functions as an antioxidant, osmolyte, and calcium modulator such that its intracellular depletion could promote cytotoxicity in diabetes. The relationships of oxidative stress and basal AR gene expression to Na+-taurine cotransporter (TT) gene expression, protein abundance, and TT activity were therefore explored in low AR-expressing human retinal pigment epithelial (RPE) 47 cells and RPE 47 cells stably transformed to overexpress AR (RPE 75).
View Article and Find Full Text PDF