Publications by authors named "Dennis Cao"

The incorporation of cationic groups onto electron-poor compounds is a viable strategy for achieving potent electron acceptors, as evidenced by reports of air-stable radical forms of large aromatic diimides such as naphthalene and perylene diimides. These ions have also been observed to exhibit anion-π interaction tendencies of interest in molecular recognition applications. The benefits of phosphonium incorporation, however, have not yet been extended to the smallest benzene diimides.

View Article and Find Full Text PDF

We report the synthesis and characterization of naphthalene and anthracene scaffolds end-capped by cyclic imides. The solid-state structures of the -phenyl derivatives, determined by X-ray crystallography, reveal changes in packing preference based on the number of aromatic rings in the core. The optical and electronic properties of the title compounds compare favorably with other previously described isomers and expand the toolbox of electron-deficient aromatic compounds available to organic materials chemists.

View Article and Find Full Text PDF

This work presents the 2 generation of cata-annulated azaacene bisimides with increased electron affinities (up to -4.38 eV) compared to their consaguine conventional azaacenes. These compounds were synthesized via Buchwald-Hartwig coupling followed by oxidation with MnO .

View Article and Find Full Text PDF

The preparation of halogenated benzene-1,2,3,4-tetracarboxylic diimide derivatives is challenging because of the possibility of competitive incorrect cyclizations and SAr reactivity. Here, we demonstrate that bypassing traditional cyclic anhydrides and instead directly reacting dihalobenzene-1,2,3,4-tetracarboxylic acids with primary amines in acetic acid solvent successfully provides a range of desirable -diimide products in good yields. Furthermore, we demonstrate that sterically challenging -derivatizations can be readily achieved under microwave reactor conditions.

View Article and Find Full Text PDF

Ultra-electron-deficient azaacenes were synthesized via Buchwald-Hartwig coupling of ortho-diaminoarenes with chlorinated mellophanic diimide followed by oxidation of the intermediate N,N'-dihydro compounds with MnO or PbO . The resulting cata-annulated bisimide azaacenes have ultrahigh electron affinities with first reduction potentials as low as -0.35 V recorded for a tetraazapentacene.

View Article and Find Full Text PDF

This work describes the unexpected formation of an unusual phosphonium ylide when attempting the synthesis of bisphosphonium pyromellitic diimides. Spectroscopic and crystallographic characterization reveals that a combination of π-π and CH⋅⋅⋅O interactions leads to supramolecular homodimerization of the ylide both in solution and in the solid-state. Only strong acids are able to protonate the ylide, which is otherwise inert to Wittig and alkylation reactivity.

View Article and Find Full Text PDF

This work describes a three-step chromatography-free protocol for the synthesis of a novel organic materials building block, dichlorinated mellophanic diimide (MDI), that is shown to undergo nucleophilic substitution with a variety of disubstituted benzenes to yield a series of chromophores. Furthermore, 1,2,4,5-tetrasubstituted benzenes can be used to synthesize tetraimide heteropentacene derivatives endcapped by MDI motifs. The fine-tuning effects of heteroatom identity were investigated by UV-vis and fluorescence spectroscopy, cyclic and differential pulse voltammetries, and density functional theory calculations.

View Article and Find Full Text PDF

Nuptial gifts are material donations given from male to female before or during copulation and are subject to sexual selection in a wide variety of taxa. The harvestman genus has emerged as a model system for understanding the evolution of reproductive morphology and behavior, as transitions between solicitous and antagonistic modes of courtship have occurred multiple times within the lineage and are correlated with convergence in genital morphology. We analyzed the free amino acid content of nuptial gift secretions from five species of using gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

In this work, we report the stabilization of the reduced states of pyromellitic diimide by charge-balancing the imide radical anions with cationic pyridinium groups attached to the aromatic core. This structural modification is confirmed by single-crystal X-ray diffraction analysis. Characterization by (spectro)electrochemical experiments and computations reveal that the addition of cationic groups to an already electron-deficient ring system results in up to +0.

View Article and Find Full Text PDF

The synthesis of stable organic polyradicals is important for the development of magnetic materials. Herein we report the synthesis, isolation, and characterization of a series of X-shaped pyromellitimide (PI) oligomers (X-R, n = 2-4, R = Hex or Ph) linked together by single C-C bonds between their benzenoid cores. We hypothesize that these oligomers might form high-spin states in their reduced forms because of the nearly orthogonal conformations adopted by their PI units.

View Article and Find Full Text PDF

Ferroelectricity in organic materials remains a subject of great interest, given its potential impact as lightweight information storage media. Here we report supramolecular charge-transfer cocrystals formed by electron acceptor and donor molecules that exhibit ferroelectric behavior along two distinct crystallographic axes. The solid-state superstructure of the cocrystals reveals that a 2:1 ratio of acceptor to donor molecules assemble into nearly orthogonal mixed stacks in which the molecules are positioned for charge-transfer in face-to-face and edge-to-face orientations, held together by an extended hydrogen-bonding network.

View Article and Find Full Text PDF

We describe a visible light-driven switchable [2]catenane, composed of a Ru(bpy)3(2+) tethered cyclobis(paraquat-p-phenylene) (CBPQT(4+)) ring that is interlocked mechanically with a macrocyclic polyether consisting of electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4'-bipyridinium (BIPY(2+)) units. In the oxidized state, the CBPQT(4+) ring encircles the DNP recognition site as a consequence of favorable donor-acceptor interactions. In the presence of an excess of triethanolamine (TEOA), visible light irradiation reduces the BIPY(2+) units to BIPY((•+)) radical cations under the influence of the photosensitizer Ru(bpy)3(2+), resulting in the movement of the CBPQT(2(•+)) ring from the DNP to the BIPY((•+)) recognition site as a consequence of the formation of the more energetically favorable trisradical complex, BIPY((•+)) ⊂ CBPQT(2(•+)).

View Article and Find Full Text PDF

Multiple organic functionalities can now be apportioned into nanoscale domains within a metal-coordinated framework, posing the following question: how do we control the resulting combination of "heterogeneity and order"? Here, we report the creation of a metal-organic framework, MOF-2000, whose two component types are incorporated in a 2:1 ratio, even when the ratio of component types in the starting solution is varied by an order of magnitude. Statistical mechanical modeling suggests that this robust 2:1 ratio has a nonequilibrium origin, resulting from kinetic trapping of component types during framework growth. Our simulations show how other "magic number" ratios of components can be obtained by modulating the topology of a framework and the noncovalent interactions between component types, a finding that may aid the rational design of functional multicomponent materials.

View Article and Find Full Text PDF

Organic charge transfer cocrystals are inexpensive, modular, and solution-processable materials that are able, in some instances, to exhibit properties such as optical nonlinearity, (semi)conductivity, ferroelectricity, and magnetism. Although the properties of these cocrystals have been investigated for decades, the principal challenge that researchers face currently is to devise an efficient approach which allows for the growth of high-quality crystalline materials, in anticipation of a host of different technological applications. The research reported here introduces an innovative design, termed LASO-lock-arm supramolecular ordering-in the form of a modular approach for the development of responsive organic cocrystals.

View Article and Find Full Text PDF

Precise control of molecular assembly is a challenging goal facing supramolecular chemists. Herein, we report the highly specific assembly of a range of supramolecular nanotubes from the enantiomeric triangular naphthalenediimide-based macrocycles (RRRRRR)- and (SSSSSS)-NDI-Δ and a class of similar solvents, namely, the 1,2-dihalo-ethanes and -ethenes (DXEs). Three kinds of supramolecular nanotubes are formed from the columnar stacking of NDI-Δ units with a 60° mutual rotation angle as a result of cooperative [C-H···O] interactions, directing interactions of the [X···X]-bonded DXE chains inside the nanotubes and lateral [X···π] or [π···π] interactions.

View Article and Find Full Text PDF

While mechanical bonding stabilizes tetrathiafulvalene (TTF) radical dimers, the question arises: what role does topology play in catenanes containing TTF units? Here, we report how topology, together with mechanical bonding, in isomeric [3]- and doubly interlocked [2]catenanes controls the formation of TTF radical dimers within their structural frameworks, including a ring-in-ring complex (formed between an organoplatinum square and a {2+2} macrocyclic polyether containing two 1,5-dioxynaphthalene (DNP) and two TTF units) that is topologically isomeric with the doubly interlocked [2]catenane. The separate TTF units in the two {1+1} macrocycles (each containing also one DNP unit) of the isomeric [3]catenane exhibit slightly different redox properties compared with those in the {2+2} macrocycle present in the [2]catenane, while comparison with its topological isomer reveals substantially different redox behavior. Although the stabilities of the mixed-valence (TTF2)(•+) dimers are similar in the two catenanes, the radical cationic (TTF(•+))2 dimer in the [2]catenane occurs only fleetingly compared with its prominent existence in the [3]catenane, while both dimers are absent altogether in the ring-in-ring complex.

View Article and Find Full Text PDF

By introducing steric constraints into molecular compounds, it is possible to achieve atypical coordination geometries for the elements. Herein, we demonstrate that a titanium-oxo cluster [{Ti4(μ4-O)(μ2-O)2}(OPr(i))6(fdc)2], which possesses a unique edge-sharing Ti4O17 octahedron tetramer core, is stabilized by the constraints produced by two orthogonal 1,1'-ferrocenedicarboxylato (fdc) ligands. As a result, a square-planar tetracoordinate oxygen (ptO) can be generated.

View Article and Find Full Text PDF

The use of high-quality graphene as a local probe in combination with photo excitation helps to establish a deep mechanistic understanding of charge generation/quenching processes under lying the graphene/environment interface. By combining a non-destructive bottom-up assembly technique with sensitive graphene-based transistors, a bistable [2]rotaxane-graphene hybrid device, which exhibits a symmetric mirror-image photoswitching effect with logic capabilities, is produced.

View Article and Find Full Text PDF

Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH₂)₆][AuBr₄](α-cyclodextrin)₂}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr₄ in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes.

View Article and Find Full Text PDF

We report the synthesis of two [2]catenane-containing struts that are composed of a tetracationic cyclophane (TC(4+)) encircling a 1,5-dioxynaphthalene (DNP)-based crown ether, which bears two terphenylene arms. The TC(4+) rings comprise either 1) two bipyridinium (BIPY(2+)) units or 2) a BIPY(2+) and a diazapyrenium (DAP(2+)) unit. These degenerate and nondegenerate catenanes were reacted in the presence of Cu(NO3)2⋅2.

View Article and Find Full Text PDF

Most organic radicals possess short lifetimes and quickly undergo dimerization or oxidation. Here, we report on the synthesis by radical templation of a class of air- and water-stable organic radicals, trapped within a homo[2]catenane composed of two rigid and fixed cyclobis(paraquat-p-phenylene) rings. The highly energetic octacationic homo[2]catenane, which is capable of accepting up to eight electrons, can be configured reversibly, both chemically and electrochemically, between each one of six experimentally accessible redox states (0, 2+, 4+, 6+, 7+, and 8+) from within the total of nine states evaluated by quantum mechanical methods.

View Article and Find Full Text PDF

The electronic properties of tetrathiafulvalene (TTF) can be tuned by attaching electron-donating or electron-withdrawing substituents. An electron-rich macrocyclic polyether containing two TTF units of different constitutions, namely 4,4'-bis(hydroxymethyl)tetrathiafulvalene (OTTFO) and 4,4'-bisthiotetrathiafulvalene (STTFS), has been synthesized. On two-electron oxidation, a hetero radical dimer is formed between OTTFO(•+) and STTFS(•+).

View Article and Find Full Text PDF

pH-responsive megagates have been fabricated around mesoporous silica material SBA-15 in order to mechanize the mesopores. These megagates remain closed in neutral conditions, but open at pH 5. The capping components of the megagates were designed to be capable of controlling pores up to 6.

View Article and Find Full Text PDF

The mechanism governing the redox-stimulated switching behavior of a tristable [2]rotaxane consisting of a cyclobis(paraquat-p-phenylene) (CBPQT(4+)) ring encircling a dumbbell, containing tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) recognition units which are separated from each other along a polyether chain carrying 2,6-diisopropylphenyl stoppers by a 4,4'-bipyridinium (BIPY(2+)) unit, is described. The BIPY(2+) unit acts to increase the lifetime of the metastable state coconformation (MSCC) significantly by restricting the shuttling motion of the CBPQT(4+) ring to such an extent that the MSCC can be isolated in the solid state and is stable for weeks on end. As controls, the redox-induced mechanism of switching of two bistable [2]rotaxanes and one bistable [2]catenane composed of CBPQT(4+) rings encircling dumbbells or macrocyclic polyethers, respectively, that contain a BIPY(2+) unit with either a TTF or DNP unit, is investigated.

View Article and Find Full Text PDF