Environmentalists are prioritizing reuse, recycling, and recovery systems to meet rising water demand. Diving into produced water treatment to enable compliance by the petroleum industry to meet discharge limits has increased research into advanced treatment technologies. The integration of biological degradation of pollutants and membrane separation has been recognized as a versatile technology in dealing with produced water with strength of salts, minerals, and oils being produced during crude refining operation.
View Article and Find Full Text PDFIn this study, the performance of a forward osmosis system was assessed over a 30-h period during desalination of a local oil refinery effluent using NaCl as the draw solute. The study was conducted with the active layer of the membrane facing the draw solution. Assessment was done based on the water flux, salt rejection (SO and CO), membrane fouling and fouling reversal after membrane cleaning.
View Article and Find Full Text PDFMembrane-based water purification technologies contribute significantly to water settings, where it is imperative to use low-cost energy sources to make the process economically and technically competitive for large-scale applications. Donnan membrane processes (DMPs) are driven by a potential gradient across an ion exchange membrane and have an advantage over fouling in conventional pressure driven membrane technologies, which are gaining attention. DMP is a removal, recovery and recycling technology that is commonly used for separation, purification and the concentrating of metals in different water and waste streams.
View Article and Find Full Text PDFWater decontamination still remains a major challenge to some developing countries not having centralized wastewater systems. Therefore, this study presents the optimization of photocatalytic degradation of Basic Blue 41 dye in an aqueous medium by an activated carbon (AC)-TiO photocatalyst under UV irradiation. The mesoporous AC-TiO synthesized by a sonication method was characterized by X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy for crystal phase identification and molecular bond structures, respectively.
View Article and Find Full Text PDFMembrane technology has gained much ground in water and wastewater treatment over the past couple of decades. This is timely, as the world explores smart, eco-friendly, and cheap water and wastewater treatment technologies in its quest to make potable water and sanitation commonplace in all parts of the world. Against this background, this study investigated forward osmosis (FO) in the removal of salts (chlorides, sulphates, and carbonates) and organics (chemical oxygen demand (COD), turbidity, total suspended solids (TSS), and color) from a synthetic municipal wastewater (MWW), mimicking secondary-treated industrial wastewater, at very low feed and draw solution flow rates (0.
View Article and Find Full Text PDF