Associative learning and memory, i.e., learning and remembering the associations between environmental stimuli, self-generated actions, and outcomes such as rewards or punishments, are critical for the well-being of animals.
View Article and Find Full Text PDFLearning the causes of rewards is necessary for survival. Thus, it is critical to understand the mechanisms of such a vital biological process. Cue-reward learning is controlled by mesolimbic dopamine and improves with spacing of cue-reward pairings.
View Article and Find Full Text PDFLearning to predict rewards based on environmental cues is essential for survival. It is believed that animals learn to predict rewards by updating predictions whenever the outcome deviates from expectations, and that such reward prediction errors (RPEs) are signaled by the mesolimbic dopamine system-a key controller of learning. However, instead of learning prospective predictions from RPEs, animals can infer predictions by learning the retrospective cause of rewards.
View Article and Find Full Text PDFDopamine modulation of nucleus accumbens (NAc) circuitry is central to theories of reward seeking and reinforcement learning. Despite decades of effort, the acute dopamine actions on the NAc microcircuitry remain puzzling. Here, we dissect out the direct actions of dopamine on lateral inhibition between medium spiny neurons (MSNs) in mouse brain slices and find that they are pathway specific.
View Article and Find Full Text PDFThis Perspective will examine the organization of intrastriatal circuitry, review recent findings in this area, and discuss how the pattern of connectivity between striatal neurons might give rise to the behaviorally observed synergism between the direct/indirect pathway neurons. The emphasis of this Perspective is on the underappreciated role of lateral inhibition between striatal projection cells in controlling neuronal firing and shaping the output of this circuit. We review some classic studies in combination with more recent anatomical and functional findings to lay out a framework for an updated model of the intrastriatal lateral inhibition, where we explore its contribution to the formation of functional units of processing and the integration and filtering of inputs to generate motor patterns and learned behaviors.
View Article and Find Full Text PDFActive maternal smoking has adverse effects on neurobehavioral development of the offspring, with nicotine (Nic) providing much of the underlying causative mechanism. To determine whether the lower exposures caused by second-hand smoke are deleterious, we administered tobacco smoke extract (TSE) to pregnant rats starting preconception and continued through the second postnatal week, corresponding to all 3 trimesters of fetal brain development. Dosing was adjusted to produce maternal plasma Nic concentrations encountered with second-hand smoke, an order of magnitude below those seen in active smokers.
View Article and Find Full Text PDFRationale: Prepulse inhibition (PPI) refers to the reduction of the startle response magnitude when a startling stimulus is closely preceded by a weak stimulus. PPI is commonly used to measure sensorimotor gating. In rats, the PPI reduction induced by the dopamine agonist apomorphine can be reversed by systemic administration of nicotine.
View Article and Find Full Text PDFNicotine has been well characterized to improve memory and attention. Nicotine is the primary, but not only neuroactive compound in tobacco. Other tobacco constituents such as anabasine and anatabine also have agonist actions on nicotinic receptors.
View Article and Find Full Text PDFNicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs.
View Article and Find Full Text PDF