Low-cost non-invasive diagnostic tools for staging the progression of non-alcoholic chronic liver failure from fatty liver disease to steatohepatitis are unavailable. Here, we describe the development and performance of a portable single-sided magnetic-resonance sensor for grading liver steatosis and fibrosis using diffusion-weighted multicomponent T2 relaxometry. In a diet-induced mouse model of non-alcoholic fatty liver disease, the sensor achieved overall accuracies of 92% (Cohen's kappa, κ = 0.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is a powerful diagnostic tool, but its use is restricted to the scanner suite. Here, we demonstrate that a bedside nuclear magnetic resonance (NMR) sensor can assess fluid status changes in individuals at a fraction of the time and cost compared to MRI. Our study recruited patients with end-stage renal disease (ESRD) who were regularly receiving hemodialysis treatments with intradialytic fluid removal as a model of volume overload and healthy controls as a model of euvolemia.
View Article and Find Full Text PDFNat Rev Nephrol
December 2016
Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic, alongside research efforts in tissue regeneration and organ-on-a-chip investigations, are likely to provide novel solutions to treat kidney diseases. Our understanding of renal anatomy and of how the biological and physico-chemical properties of nanomedicines (the combination of a nanocarrier and a drug) influence their interactions with renal tissues has improved dramatically.
View Article and Find Full Text PDFPreviously, we reported an acidification-dependent interaction of the endosomal vacuolar H(+)-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1-17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2.
View Article and Find Full Text PDFVasopressin (VP) binds to the vasopressin type 2 receptor (V2R) to trigger physiological effects including body fluid homeostasis and blood pressure regulation. Signaling is terminated by receptor downregulation involving clathrin-mediated endocytosis and V2R degradation. We report here that both native and epitope-tagged V2R are internalized from the plasma membrane of LLC-PK1 kidney epithelial cells in the presence of another ligand, transferrin (Tf).
View Article and Find Full Text PDFThe vasopressin receptor type 2 (V2R) is the major target of vasopressin (VP) in renal epithelial cells. Although it is known that VP induces V2R internalization, accumulation in the perinuclear area, and degradation, the V2R intracellular trafficking pathways remain elusive. We visualized this process by developing a new fluorescent VP analog tagged by tetramethylrhodamine (TMR)-[Lys-(PEG)(2)-Suc-TMR(8)]VP or (VP(TMR)).
View Article and Find Full Text PDFPreviously, we demonstrated that the vacuolar-type H(+)-ATPase (V-ATPase) a2-subunit functions as an endosomal pH sensor that interacts with the ADP-ribosylation factor (Arf) guanine nucleotide exchange factor, ARNO. In the present study, we showed that ARNO directly interacts not only with the a2-subunit but with all a-isoforms (a1-a4) of the V-ATPase, indicating a widespread regulatory interaction between V-ATPase and Arf GTPases. We then extended our search for other ARNO effectors that may modulate V-ATPase-dependent vesicular trafficking events and actin cytoskeleton remodeling.
View Article and Find Full Text PDFThe kidney regulates body fluid, ion and acid/base homeostasis through the interaction of a host of channels, transporters and pumps within specific tubule segments, specific cell types and specific plasma membrane domains. Furthermore, renal epithelial cells have adapted to function in an often unique and challenging environment that includes high medullary osmolality, acidic pHs, variable blood flow and constantly changing apical and basolateral 'bathing' solutions. In this review, we focus on selected protein trafficking events by which kidney epithelial cells regulate body fluid, ion and acid-base homeostasis in response to changes in physiological conditions.
View Article and Find Full Text PDFThe primary cilium of renal epithelial cells is a nonmotile sensory organelle, implicated in mechanosensory transduction signals. Recent studies from our laboratory indicate that renal epithelial primary cilia display abundant channel activity; however, the presence and functional role of specific membrane receptors in this organelle are heretofore unknown. Here, we determined a functional signaling pathway associated with the type 2 vasopressin receptor (V2R) in primary cilia of renal epithelial cells.
View Article and Find Full Text PDFThe kidney has a cortico-medullary interstitial gradient of decreasing pH and increasing concentrations of sodium chloride and urea, but the influence of these gradients on receptor signaling is largely unknown. Here, we measured G-protein coupled receptor function in LLC-PK1 cells acutely exposed to conditions mimicking different kidney regions. Signaling through the parathyroid hormone receptor, normally expressed in the cortex, was greatly reduced at an acidic pH similar to that of the inner medulla.
View Article and Find Full Text PDFThe vasopressin type 2 receptor (V2R) is a G protein-coupled receptor that plays a central role in renal water reabsorption. Termination of ligand (vasopressin) stimulation is an important physiological regulatory event, but few proteins that interact with the V2R during downregulation after vasopressin (VP) binding have been identified. Using yeast two-hybrid screening of a human kidney cDNA library, we show that a 100-kDa protein called ALG-2-interacting protein X (Alix) interacts with the last 29 amino acids of the V2R COOH terminus.
View Article and Find Full Text PDFBackground Information: Aquaporin 2 (AQP2) plays an important, VP (vasopressin)-regulated role in water reabsorption by the kidney. The amount of AQP2 expressed at the surface of principal cells results from an equilibrium between the AQP2 in intracellular vesicles and the AQP2 on the plasma membrane. VP shifts the equilibrium in favour of the plasma membrane and this allows osmotic equilibration to occur between the collecting duct lumen and the interstitial space.
View Article and Find Full Text PDFThe recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase.
View Article and Find Full Text PDFThe primary cilium is a ubiquitous, non-motile microtubular organelle lacking the central pair of microtubules found in motile cilia. Primary cilia are surrounded by a membrane, which has a unique complement of membrane proteins, and may thus be functionally different from the plasma membrane. The function of the primary cilium remains largely unknown.
View Article and Find Full Text PDFVasopressin (VP) increases urinary concentration by signaling through the vasopressin receptor (V2R) in collecting duct principal cells. After downregulation, V2R reappears at the cell surface via an unusually slow (several hours) "recycling" pathway. To examine this pathway, we expressed V2R-green fluorescent protein (GFP) in LLC-PK1a cells.
View Article and Find Full Text PDFImagination and creativity are essential traits that medicine, and medical insurers, must again learn to recognize and reward
View Article and Find Full Text PDFIn this study, the presence of Na(+)-permeable cation channels was determined and characterized in LLC-PK1 cells, a renal tubular epithelial cell line with proximal tubule characteristics derived from pig kidney. Patch-clamp analysis under cell-attached conditions indicated the presence of spontaneously active Na(+)-permeable cation channels. The channels displayed nonrectifying single channel conductance of 11 pS, substates, and an approximately 3:1 Na(+)/K(+) permeability-selectivity ratio.
View Article and Find Full Text PDFADP-ribosylation factors (Arfs) are small GTPases that regulate vesicular trafficking in exo- and endocytotic pathways. As a first step in understanding the role of Arfs in renal physiology, immunocytochemistry and Western blotting were performed to characterize the expression and targeting of Arf1 and Arf6 in epithelial cells in situ. Arf1 and Arf6 were associated with apical membranes and subapical vesicles in proximal tubules, where they colocalized with megalin.
View Article and Find Full Text PDFInteraction of the type 2 vasopressin receptor (V2R) with hormone causes desensitization and internalization. To study the role of the V2R NPxxY motif (which is involved in the clathrin-mediated endocytosis of several other receptors) in this process, we expressed FLAG-tagged wild-type V2R and a Y325F mutant V2R in LLC-PK1a epithelial cells that have low levels of endogenous V2R. Both proteins had a similar apical (35%) and basolateral (65%) membrane distribution.
View Article and Find Full Text PDFCurr Opin Nephrol Hypertens
September 2002
Purpose Of Review: In recent years, there have been significant advances in our understanding of the molecular mechanisms relating proximal tubule abnormalities to the pathogenesis of renal Fanconi syndrome. This review focuses on the role of intra-endosomal acidification-machinery proteins (V-ATPase, CLC-5, NHE-3), as well as apical receptors (megalin and cubilin), in the receptor-mediated endocytosis pathway and in the pathogenesis of proximal tubulopathies.
Recent Findings: Animal models, including CLC-5 and megalin knockout mice, cubilin-deficient dogs and cadmium-toxicity studies in rats, have shed light on defects leading to low-molecular-weight proteinuria.