Publications by authors named "Dennie Wezendonk"

Thermal catalytic decomposition of methane is an innovative pathway to produce CO-free hydrogen from natural gas. We investigated the role of Cu content in carbon-supported bimetallic NiCu catalysts. A graphitic carbon material was used as a model support, and we combined operando methane decomposition experiments in a thermogravimetric analyzer with electron microscopy measurements.

View Article and Find Full Text PDF

Unavoidable water formation during the reduction of solid catalyst precursors has long been known to influence the nanoparticle size and dispersion in the active catalyst. This in situ transmission electron microscopy study provides insight into the influence of water vapor at the nanoscale on the nucleation and growth of the nanoparticles (2-16 nm) during the reduction of a nickel phyllosilicate catalyst precursor under H/Ar gas at 700 °C. Water suppresses and delays nucleation, but counterintuitively increases the rate of particle growth.

View Article and Find Full Text PDF

Self-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers.

View Article and Find Full Text PDF

Photoluminescence is a powerful tool in temperature sensing. Recently, the application of upconversion (UC) nanocrystals (NCs) has shown great potential for nanothermometry due to high spatial resolution, superior accuracy, and its non-invasive nature. In addition to spectral changes upon heating, anomalous thermal enhancement of UC emission has been reported for UC NCs, but the underlying mechanism remains unclear.

View Article and Find Full Text PDF