Background: B-cell chronic lymphocytic leukemia (CLL) is a common type of adult leukemia. It often follows an indolent course and is preceded by monoclonal B-cell lymphocytosis, an asymptomatic condition, however it is not known what causes subjects with this condition to progress to CLL. Hence the discovery of prediagnostic markers has the potential to improve the identification of subjects likely to develop CLL and may also provide insights into the pathogenesis of the disease of potential clinical relevance.
View Article and Find Full Text PDFPersistent organic pollutants (POPs) are synthetic chemical substances that accumulate in our environment. POPs such as polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane (DDT) have been classified as carcinogenic to humans and animals. Due to their resistance to biodegradation humans are still exposed to these compounds worldwide.
View Article and Find Full Text PDFWe recently reported that differential gene expression and DNA methylation profiles in blood leukocytes of apparently healthy smokers predicts with remarkable efficiency diseases and conditions known to be causally associated with smoking, suggesting that blood-based omic profiling of human populations may be useful for linking environmental exposures to potential health effects. Here we report on the sex-specific effects of tobacco smoking on transcriptomic and epigenetic features derived from genome-wide profiling in white blood cells, identifying 26 expression probes and 92 CpG sites, almost all of which are affected only in female smokers. Strikingly, these features relate to numerous genes with a key role in the pathogenesis of cardiovascular disease, especially thrombin signaling, including the thrombin receptors on platelets F2R (coagulation factor II (thrombin) receptor; PAR1) and GP5 (glycoprotein 5), as well as HMOX1 (haem oxygenase 1) and BCL2L1 (BCL2-like 1) which are involved in protection against oxidative stress and apoptosis, respectively.
View Article and Find Full Text PDFBackground: We hypothesize that biological perturbations due to exposure to ambient air pollution are reflected in gene expression levels in peripheral blood mononuclear cells.
Methods: We assessed the association between exposure to ambient air pollution and genome-wide gene expression levels in peripheral blood mononuclear cells collected from 550 healthy subjects participating in cohorts from Italy and Sweden. Annual air pollution estimates of nitrogen oxides (NOx) at time of blood collection (1990-2006) were available from the ESCAPE study.
New engineering possibilities allow biomaterials to serve as active orchestrators of the molecular and cellular events of tissue regeneration. Here, the molecular control of tissue regeneration for calcium phosphate (CaP)-based materials is established by defining the parameters critical for tissue induction and those are linked to the molecular circuitry controlling cell physiology. The material properties (microporosity, ion composition, protein adsorption) of a set of synthesized osteoinductive and noninductive CaP ceramics are parameterized and these properties are correlated to a transcriptomics profile of osteogenic cells grown on the materials in vitro.
View Article and Find Full Text PDFWhen evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e.
View Article and Find Full Text PDFThe utility of blood-based omic profiles for linking environmental exposures to their potential health effects was evaluated in 649 individuals, drawn from the general population, in relation to tobacco smoking, an exposure with well-characterised health effects. Using disease connectivity analysis, we found that the combination of smoking-modified, genome-wide gene (including miRNA) expression and DNA methylation profiles predicts with remarkable reliability most diseases and conditions independently known to be causally associated with smoking (indicative estimates of sensitivity and positive predictive value 94% and 84%, respectively). Bioinformatics analysis reveals the importance of a small number of smoking-modified, master-regulatory genes and suggest a central role for altered ubiquitination.
View Article and Find Full Text PDFMotivation: The field of toxicogenomics (the application of '-omics' technologies to risk assessment of compound toxicities) has expanded in the last decade, partly driven by new legislation, aimed at reducing animal testing in chemical risk assessment but mainly as a result of a paradigm change in toxicology towards the use and integration of genome wide data. Many research groups worldwide have generated large amounts of such toxicogenomics data. However, there is no centralized repository for archiving and making these data and associated tools for their analysis easily available.
View Article and Find Full Text PDFIn the context of environmental health research, biobank blood samples have recently been identified as suitable for high-throughput omics analyses enabling the identification of new biomarkers of exposure and disease. However, blood samples containing the anti-coagulant heparin could complicate transcriptomic analysis because heparin may inhibit RNA polymerase causing inefficient cRNA synthesis and fluorophore labelling. We investigated the inhibitory effect of heparin and the influence of storage conditions (0 or 3 hr bench times, storage at room temperature or -80°C) on fluorophore labelling in heparinized fresh human buffy coat and whole blood biobank samples during the mRNA work-up protocol for microarray analysis.
View Article and Find Full Text PDFCurrent testing models for predicting drug-induced liver injury are inadequate, as they basically under-report human health risks. We present here an approach towards developing pathways based on hepatotoxicity-associated gene groups derived from two types of publicly accessible hepatotoxicity databases, in order to develop drug-induced liver injury biomarker profiles. One human liver 'omics-based and four text-mining-based databases were explored for hepatotoxicity-associated gene lists.
View Article and Find Full Text PDFBackground: The suitability for omic analysis of biosamples collected in previous decades and currently stored in biobanks is unknown.
Objectives: We evaluated the influence of handling and storage conditions of blood-derived biosamples on transcriptomic, epigenomic (CpG methylation), plasma metabolomic [UPLC-ToFMS (ultra performance liquid chromatography-time-of-flight mass spectrometry)], and wide-target proteomic profiles.
Methods: We collected fresh blood samples without RNA preservative in heparin, EDTA, or citrate and held them at room temperature for ≤ 24 hr before fractionating them into buffy coat, erythrocytes, and plasma and freezing the fractions at -80oC or in liquid nitrogen.
Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake.
View Article and Find Full Text PDFToxicol Lett
December 2011
N-nitroso compounds (NOCs) may represent a carcinogenic risk to humans following endogenous colonic nitrosation processes. We used the colon adenocarcinoma cell line Caco-2 to investigate transcriptomic changes at three time points (1, 6, 24 h) following exposure to genotoxic concentrations of six different NOCs (two nitrosamides, four nitrosamines) with the purpose of identifying biological processes that may play a part in the carcinogenicity of these compounds. This is especially important for nitrosamide exposure where, in light of their high reactivity, important gene expression modifications may take place early in the exposure.
View Article and Find Full Text PDFN-nitroso compounds (NOCs) are suspected human carcinogens and relevant in human exposure. NOCs also induce micronuclei (MN) formation in vivo. Since lymphocytic MN represent a validated biomarker of human cancer risk, establishing a link between NOC exposure and MN frequency in humans and concurrently investigating associated transcriptomic responses may provide crucial information on underlying molecular mechanisms that predispose to carcinogenicity.
View Article and Find Full Text PDFEndogenous formation of N-nitroso compounds (NOCs), which are known animal carcinogens, could contribute to human carcinogenesis but definitive evidence is still lacking. To investigate the relevance of NOCs in human colorectal cancer (CRC) development, we analyzed whole genome gene expression modifications in human colon biopsies in relation to fecal NOC exposure. We had a particular interest in patients suffering from intestinal inflammation as this may stimulate endogenous NOC formation, and consequently predispose to CRC risk.
View Article and Find Full Text PDFN-nitroso compounds (NOCs) may be implicated in human colon carcinogenesis, but the toxicological mechanisms involved have not been elucidated. Because it was previously demonstrated that nitrosamines and nitrosamides, representing two classes of NOC, induce distinct gene expression effects in colon cells that are particularly related to oxidative stress, we hypothesized that different radical mechanisms are involved. Using electron spin resonance spectroscopy, we investigated the radical-generating properties of genotoxic NOC concentrations in human colon adenocarcinoma cells (Caco-2).
View Article and Find Full Text PDFN-nitroso compounds (NOC) are genotoxic, carcinogenic to animals, and may play a role in human cancer development. Because the gastro-intestinal tract is an important route of exposure through endogenous nitrosation, we hypothesize that NOC exposure targets genetic processes relevant in colon carcinogenesis. To investigate these genomic responses, we analyzed the transcriptomic effects of genotoxic concentrations of two nitrosamides, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 1 microM) and N-methyl-N-nitrosurea (MNU, 1 mM), and four nitrosamines, N-nitrosodiethylamine (NDEA, 50mM), N-nitrosodimethylamine (NDMA, 100 mM), N-nitrosopiperidine (NPIP, 40 mM), and N-nitrosopyrrolidine (NPYR, 100mM), in the human colon carcinoma cell line Caco-2.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) cover a wide range of structurally related compounds which differ greatly in their carcinogenic potency. PAH exposure usually occurs through mixtures rather than individual compounds. Therefore, we assessed whether the effects of binary PAH mixtures on gene expression, DNA adduct formation, apoptosis and cell cycle are additive compared with the effects of the individual compounds in human hepatoma cells (HepG2).
View Article and Find Full Text PDF