Publications by authors named "Denner A"

Objective: Recent literature studying the impact of blood transfusion on outcomes in patients with head and neck cancer (HNC) have shown that blood transfusions are associated with increased risk of death and higher wound infection rates. The purpose of this study was to implement a lower transfusion threshold while comparing outcomes of free flap patients following initiation of a new transfusion guideline.

Methods: A retrospective study of all patients at a tertiary care academic center who underwent free tissue transfer after HNC resection between July 17, 2007 and June 7, 2021.

View Article and Find Full Text PDF

In animals, stem cell populations of varying potency facilitate regeneration and tissue homeostasis. Notably, germline stem cells in both vertebrates and invertebrates express highly conserved RNA binding proteins, such as , , and . In highly regenerative animals, these genes are also expressed in somatic stem cells, which led to the proposal that they had an ancestral role in all stem cells.

View Article and Find Full Text PDF

Background: The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al.

View Article and Find Full Text PDF

Animals are typically composed of hundreds of different cell types, yet mechanisms underlying the emergence of new cell types remain unclear. Here we address the origin and diversification of muscle cells in the non-bilaterian, diploblastic sea anemone Nematostella vectensis. We discern two fast and two slow-contracting muscle cell populations, which differ by extensive sets of paralogous structural protein genes.

View Article and Find Full Text PDF

Communication in bilaterian nervous systems is mediated by electrical and secreted signals; however, the evolutionary origin and relation of neurons to other secretory cell types has not been elucidated. Here, we use developmental single-cell RNA sequencing in the cnidarian Nematostella vectensis, representing an early evolutionary lineage with a simple nervous system. Validated by transgenics, we demonstrate that neurons, stinging cells, and gland cells arise from a common multipotent progenitor population.

View Article and Find Full Text PDF

The biopharmaceutical industry must guarantee the efficiency and biosafety of biological medicines, which are quite sensitive to cell culture process variability. Real-time monitoring procedures based on vibrational spectroscopy such as near-infrared (NIR) spectroscopy, are then emerging to support innovative strategies for retro-control of key parameters as substrates and by-product concentration. Whereas monitoring models are mainly constructed using partial least squares regression (PLSR), spectroscopic models based on artificial neural networks (ANNR) and support vector regression (SVR) are emerging with promising results.

View Article and Find Full Text PDF

In this article we present an event generator based on the Monte Carlo program Powheg in combination with the matrix-element generator Recola. We apply it to compute NLO electroweak corrections to same-sign W-boson scattering, which have been shown to be large at the LHC. The event generator allows for the generation of unweighted events including the effect of the NLO electroweak corrections matched to a QED parton shower and interfaced to a QCD parton shower.

View Article and Find Full Text PDF

Vector-boson scattering processes are of great importance for the current run-II and future runs of the Large Hadron Collider. The presence of triple and quartic gauge couplings in the process gives access to the gauge sector of the Standard Model (SM) and possible new-physics contributions there. To test any new-physics hypothesis, sound knowledge of the SM contributions is necessary, with a precision which at least matches the experimental uncertainties of existing and forthcoming measurements.

View Article and Find Full Text PDF

For the first time full next-to-leading-order electroweak corrections to off-shell vector-boson scattering are presented. The computation features the complete matrix elements, including all nonresonant and off-shell contributions, to the electroweak process pp→μ^{+}ν_{μ}e^{+}ν_{e}jj and is fully differential. We find surprisingly large corrections, reaching -16% for the fiducial cross section, as an intrinsic feature of the vector-boson-scattering processes.

View Article and Find Full Text PDF

High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the  jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by  jet,  jet and  jet production, and extrapolating to the  jet background by means of precise theoretical predictions.

View Article and Find Full Text PDF

Background: The TRP channel ankyrin type 1 (TRPA1) is a nonselective cation channel known to be activated by environmental irritants, cold and endogenous mediators of inflammation. Activation of TRPA1 in trigeminal afferents innervating meningeal structures has recently been suggested to be involved in the generation of headaches.

Methods: Two in vitro models of meningeal nociception were employed using the hemisected rodent head preparation, (1) recording of single meningeal afferents and (2) release of calcitonin gene-related peptide (CGRP) from the cranial dura mater.

View Article and Find Full Text PDF

The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons are taken into account. Focusing on the mixed final state μ^{+}μ^{-}e^{+}e^{-}, we study differential cross sections that are particularly interesting for Higgs boson analyses. The electroweak corrections are divided into photonic and purely weak corrections.

View Article and Find Full Text PDF

Background: Sleep apnea (SA) is associated with sudden cardiac death. Compared to central apneas, obstructive apneas are associated with negative intrathoracic pressure swings inducing autonomic imbalance, which may disturb ventricular repolarisation resulting in arrhythmias.

Objectives: To identify the influence of obstructive apneas versus central apneas on ventricular repolarisation.

View Article and Find Full Text PDF
Article Synopsis
  • The report provides an in-depth review of physics research at a linear collider operating between specific energy levels of 100 GeV to 3 TeV, considering recent results from the LHC and other low-energy and astroparticle experiments.
  • It emphasizes key areas of study, including the Higgs boson, top quark, and electroweak precision physics, while also exploring theories beyond the standard model, like supersymmetry and extra gauge bosons.
  • Additionally, the report examines the implications of this research in the context of cosmology, highlighting the broader significance of these findings.
View Article and Find Full Text PDF

Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections.

View Article and Find Full Text PDF

Tendon ruptures and defects remain major orthopaedic challenges. Tendon healing is a time-consuming process, which results in scar tissue with an altered biomechanical competence. Using a xenogeneic tendon extracellular matrix (ECM) as a natural scaffold, which can be reseeded with autologous human tenocytes, might be a promising approach to reconstruct damaged tendons.

View Article and Find Full Text PDF

Top-antitop quark pairs belong to the most abundantly produced and precisely measurable heavy-particle signatures at hadron colliders and allow for crucial tests of the standard model and new physics searches. Here we report on the calculation of the next-to-leading order (NLO) QCD corrections to hadronic W(+)W(-)bb production, which provides a complete NLO description of the production of top-antitop pairs and their subsequent decay into W bosons and bottom quarks, including interferences, off-shell effects, and nonresonant backgrounds. Numerical predictions for the Tevatron and the LHC are presented.

View Article and Find Full Text PDF

We report on the calculation of the full next-to-leading-order QCD corrections to the production of ttbb final states at the LHC, which deliver a serious background contribution to the production of a Higgs boson (decaying into a bb pair) in association with a tt pair. While the corrections significantly reduce the unphysical scale dependence of the leading-order cross section, our results predict an enhancement of the ttbb production cross section by a K factor of about 1.8.

View Article and Find Full Text PDF

Radiative corrections of strong and electroweak interactions are presented at next-to-leading order for the production of a Higgs boson plus two hard jets via weak interactions at the CERN Large Hadron Collider. The calculation includes all weak-boson fusion and quark-antiquark annihilation diagrams as well as the corresponding interferences. The electroweak corrections, which are discussed here for the first time, reduce the cross sections by 5% and thus are of the same order of magnitude as the QCD corrections.

View Article and Find Full Text PDF

OBJECTIVE: To evaluate the neuromuscular activation profiles of trunk muscles in commonly used gymnastic strength exercises with a polymyographic set-up and to describe the training effects of each exercise. DESIGN AND SETTING: Subjects performed 9 repetitions of each of 12 gymnastic exercises. Variations of 5 trunk flexions, 5 extensions, and 2 lateral-flexion movements were performed under standardized test conditions.

View Article and Find Full Text PDF