We address, both experimentally and theoretically, the issue of infrared (IR) resonance enhanced multiphoton ionization (IR-REMPI) and thermally induced redshifts of IR absorption lines in a very large and highly vibrationally excited molecular system. Isolated superhot C60 molecules with well defined and variable average vibrational energy in the range of 9-19 eV, effusing out of a constant flux thermal source, are excited and ionized after the absorption of multiple (500-800) infrared photons in the 450-1800 cm(-1) spectral energy range. Recording the mass-selected ion signal as a function of IR wavelength gives well resolved IR-REMPI spectra, with zero off-resonance background signal.
View Article and Find Full Text PDFMetal-benzene complexes of the form M(benzene)(n) (M = Ti, V, Fe, Co, Ni) are produced in the gas-phase environment of a molecular beam by laser vaporization in a pulsed nozzle cluster source. These complexes are photoionized with an ArF excimer laser, producing the corresponding cations. The respective mono- and dibenzene complex ions are isolated in an ion-trap mass spectrometer and studied with infrared resonance enhanced multiple-photon dissociation (IR-REMPD) spectroscopy using a tunable free electron laser.
View Article and Find Full Text PDFNiobium and tantalum carbide clusters have been isolated in the gas phase and irradiated with intense tunable infrared (IR) light. Stable neutral clusters are selectively ionized and subsequently detected in a mass spectrometer. By tuning the IR frequency, infrared multiphoton absorption spectra are obtained for a whole range of clusters.
View Article and Find Full Text PDF