Foams are inherently unstable objects, that age and disappear over time. The main cause of foam aging is Ostwald ripening: smaller air bubbles within the foam empty their gas content into larger ones. One strategy to counter Ostwald ripening consists in creating armored bubbles, where solid particles adsorbed at the air/liquid interface prevent bubbles from shrinking below a given size.
View Article and Find Full Text PDFWheat bran incorporation into biscuits may increase their nutritional value, however, it may affect dough rheology and baking performance, due to the effect of bran particles on dough structure and an increase in water absorption. This study analyzed the enrichment effect of wheat bran and arabinoxylans, the most important non-starch polysaccharides found in whole wheat flour, on dough rheology and thermal behaviour during processing of rotary-moulded biscuits. The objective was to understand the contribution of arabinoxylans during biscuit-making and their impact when incorporated as wheat bran.
View Article and Find Full Text PDFFoams can be stabilized for long periods by the adsorption of solid particles on the liquid-gas interfaces. Although such long-term observations are common, mechanistic descriptions of the particle adsorption process are scarce, especially in confined flows, in part due to the difficulty of observing the particles in the complex gas-liquid dispersion of a foam. Here, we characterise the adsorption of micron-scale particles onto the interface of a bubble flowing in a colloidal aqueous suspension within a microfluidic channel.
View Article and Find Full Text PDFA strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an "armored bubble" to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air-water interface as a function of surface coverage.
View Article and Find Full Text PDFTuning the mechanical properties of microcapsules through a cost-efficient route of fabrication is still a challenge. The traditional method of layer-by-layer assembly of microcapsules allows building a tailored composite multi-layer membrane but is technically complex as it requires numerous steps. The objective of this article is to characterize the interfacial rheological properties of self-assembling biopolymer microcapsules that were obtained in one single facile step.
View Article and Find Full Text PDFAn osmotic imbalance between the two water phases of multiple water-in-oil-in-water (W1/O/W2) emulsions results in either emulsion swelling or shrinking due to water migration across the oil layer. Controlled mass transport is not only of importance for emulsion stability but also allows transient emulsion thickening or the controlled release of encapsulated substances, such as nutriments or simply salt. Our prior work has shown that mass transport follows two sequential stages.
View Article and Find Full Text PDFThis contribution reports on the mass transport kinetics of osmotically imbalanced water-in-oil-in-water (W1/O/W2) emulsions. Although frequently studied, the control of mass transport in W1/O/W2 emulsions is still challenging. We describe a microfluidics-based method to systematically investigate the impact of various parameters, such as osmotic pressure gradient, oil phase viscosity, and temperature, on the mass transport.
View Article and Find Full Text PDFMonodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm.
View Article and Find Full Text PDFInterfacial properties of native β-lactoglobulin monomers and their heat-induced fibers, of two different lengths, were investigated at pH 2, through surface tension measurements at water-air and water-oil interfaces and interfacial shear rheology at the water-oil interface. The applied heat treatment generates a mixed system of fibers with unconverted monomers and hydrolyzed peptides. The surface tension of this system at the water-air interface decreased more rapidly than the surface tension of native monomers, especially at short times (10(-3) to 10(2) s).
View Article and Find Full Text PDFFrom two-drop collision experiments, it is known that local extensional flow favors coalescence. Recently, Bremond et al. used microfluidic methods to evidence this point.
View Article and Find Full Text PDF