Fluorescence tomography (FT) has become a powerful preclinical imaging modality with a great potential for several clinical applications. Although it has superior sensitivity and utilizes low-cost instrumentation, the highly scattering nature of bio-tissue makes FT in thick samples challenging, resulting in poor resolution and low quantitative accuracy. To overcome the limitations of FT, we previously introduced a novel method, termed temperature modulated fluorescence tomography (TMFT), which is based on two key elements: (1) temperature-sensitive fluorescent agents (ThermoDots) and (2) high-intensity focused ultrasound (HIFU).
View Article and Find Full Text PDFIn preclinical research, fluorescence molecular tomography (FMT) is the most sensitive imaging modality to interrogate whole-body and provide 3D distribution of fluorescent contract agents. Despite its superior sensitivity, its mediocre spatial-resolution has been the main barrier to its clinical translation. This limitation is mainly due to the high scattering of optical photons in biological tissue together with the limited boundary measurements that lead to an undetermined and ill-posed inverse problem.
View Article and Find Full Text PDF