The seemingly simple step of molding a cholesteric liquid crystal into spherical shape, yielding a Cholesteric Spherical Reflector (CSR), has profound optical consequences that open a range of opportunities for potentially transformative technologies. The chiral Bragg diffraction resulting from the helical self-assembly of cholesterics becomes omnidirectional in CSRs. This turns them into selective retroreflectors that are exceptionally easy to distinguish-regardless of background-by simple and low-cost machine vision, while at the same time they can be made largely imperceptible to human vision.
View Article and Find Full Text PDFSoft Matter
September 2020
Inspired by the structural coloring in nature, especially the crystalline ordering and responsive characteristics of those found in chameleon skins, artificial photonic materials for sensor applications were fabricated. Cholesteric liquid crystals (CLCs) were employed in the templated synthesis of polymeric particles with periodic structures that allow visible light to undergo Bragg reflection and their response was tested against volatile organic compounds (VOCs). We demonstrate that the particles were responsive against toluene with detection limits on the order of 100 ppm.
View Article and Find Full Text PDF