Publications by authors named "Deniz Ertas"

Nucleation and subsequent expansion of gas bubbles in porous media is relevant to many applications, including oil recovery, carbon storage, and boiling. We have built an experimental setup using microfluidic chips to study the dynamics of bubble growth in porous media. Visualization experiments of the growth of carbon dioxide bubbles in a supersaturated dodecane solution were conducted.

View Article and Find Full Text PDF

Induced polarization (IP) mapping has gained increasing attention in the past decades, as electrical induced polarization has been shown to provide interesting signatures for detecting the presence of geological materials such as clay, ore, pyrite, and potentially, hydrocarbons. However, efforts to relate complex conductivities associated with IP to intrinsic physical properties of the corresponding materials have been largely empirical. Here we present a quantitative interpretation of induced polarization signatures from brine-filled rock formations with conductive inclusions and show that new opportunities in geophysical exploration and characterization could arise.

View Article and Find Full Text PDF

We report numerical results for velocity correlations in dense, gravity-driven granular flow down an inclined plane. For the grains on the surface layer, our results are consistent with experimental measurements reported by Pouliquen. We show that the correlation structure within planes parallel to the surface persists in the bulk.

View Article and Find Full Text PDF
Ripening of porous media.

Phys Rev E Stat Nonlin Soft Matter Phys

September 2004

We address the surface-tension-driven dynamics of porous media in nearly saturated pore-space solutions. We linearize this dynamics in the reaction-limited regime near its fixed points--surfaces of constant mean curvature (CMC surfaces). We prove that the only stable interface for this dynamics is the plane and estimate the time scale for a CMC surface to become unstable.

View Article and Find Full Text PDF
Stability of monomer-dimer piles.

Phys Rev E Stat Nonlin Soft Matter Phys

November 2002

We present an experimental and theoretical study of piles consisting of monodisperse spherical grains mixed with a weight fraction nu(d) of dimer grains made by the rigid bonding of two such spherical grains. The maximum static angle of stability tantheta(c) of the pile increases from 0.45 to 1.

View Article and Find Full Text PDF

Based on large-scale, three-dimensional chute flow simulations of granular systems, we uncover strong analogies between the jamming of the grains and the liquid-glass transition. The angle of inclination theta in the former transition appears as an analog of temperature T in the latter. The transition is manifested in the development of a plateau in the contact normal force distribution P(f) at small forces, the splitting of the second peak in the pair-correlation function g(r), and increased fluctuations of the system energy.

View Article and Find Full Text PDF

We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution. Although frictionless packings of hard spheres are always isostatic (with six contacts) regardless of construction history and restitution coefficient, frictional packings achieve a multitude of hyperstatic packings that depend on system parameters and construction history. Instead of immediately dropping to four, the coordination number reduces smoothly from z=6 as the friction coefficient mu between two particles is increased.

View Article and Find Full Text PDF