Publications by authors named "Deniz Eroglu"

Regime switching, the process where complex systems undergo transitions between qualitatively different dynamical states due to changes in their conditions, is a widespread phenomenon, from climate and ocean circulation, to ecosystems, power grids, and the brain. Capturing the mechanisms that give rise to isolated or sequential switching dynamics, as well as developing generic and robust methods for forecasting, detecting, and controlling them is essential for maintaining optimal performance and preventing dysfunctions or even collapses in complex systems. This Focus Issue provides new insights into regime switching, covering the recent advances in theoretical analysis harnessing the reduction approaches, as well as data-driven detection methods and non-feedback control strategies.

View Article and Find Full Text PDF

Almost two decades ago, Ernesto P. Borges and Bruce M. Boghosian embarked on the intricate task of composing a manuscript to honor the profound contributions of Constantino Tsallis to the realm of statistical physics, coupled with a concise exploration of -Statistics.

View Article and Find Full Text PDF

Tissues are complex environments where different cell types are in constant interaction with each other and with non-cellular components. Preserving the spatial context during proteomics analyses of tissue samples has become an important objective for different applications, one of the most important being the investigation of the tumor microenvironment. Here, we describe a multiplexed protein biomarker detection method on the COMET instrument, coined sequential ImmunoFluorescence (seqIF).

View Article and Find Full Text PDF

Reconstructing network dynamics from data is crucial for predicting the changes in the dynamics of complex systems such as neuron networks; however, previous research has shown that the reconstruction is possible under strong constraints such as the need for lengthy data or small system size. Here, we present a recovery scheme blending theoretical model reduction and sparse recovery to identify the governing equations and the interactions of weakly coupled chaotic maps on complex networks, easing unrealistic constraints for real-world applications. Learning dynamics and connectivity lead to detecting critical transitions for parameter changes.

View Article and Find Full Text PDF

Networks of weakly coupled oscillators had a profound impact on our understanding of complex systems. Studies on model reconstruction from data have shown prevalent contributions from hypernetworks with triplet and higher interactions among oscillators, in spite that such models were originally defined as oscillator networks with pairwise interactions. Here, we show that hypernetworks can spontaneously emerge even in the presence of pairwise albeit nonlinear coupling given certain triplet frequency resonance conditions.

View Article and Find Full Text PDF

A central issue in the study of large complex network systems, such as power grids, financial networks, and ecological systems, is to understand their response to dynamical perturbations. Recent studies recognize that many real networks show nonnormality and that nonnormality can give rise to reactivity-the capacity of a linearly stable system to amplify its response to perturbations, oftentimes exciting nonlinear instabilities. Here, we identify network structural properties underlying the pervasiveness of nonnormality and reactivity in real directed networks, which we establish using the most extensive dataset of such networks studied in this context to date.

View Article and Find Full Text PDF

The analysis of irregularly sampled time series remains a challenging task requiring methods that account for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit distance is an effective metric to quantitatively compare time series segments of unequal length by computing the cost of transforming one segment into the other. We show that transformation costs generally exhibit a nontrivial relationship with local sampling rate.

View Article and Find Full Text PDF

We have introduced a multiplex recurrence network approach by combining recurrence networks with the multiplex network approach in order to investigate multivariate time series. The potential use of this approach is demonstrated on coupled map lattices and a typical example from palaeobotany research. In both examples, topological changes in the multiplex recurrence networks allow for the detection of regime changes in their dynamics.

View Article and Find Full Text PDF

Describing a time series parsimoniously is the first step to study the underlying dynamics. For a time-discrete system, a generating partition provides a compact description such that a time series and a symbolic sequence are one-to-one. But, for a time-continuous system, such a compact description does not have a solid basis.

View Article and Find Full Text PDF

The East Asian-Indonesian-Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian-Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could 'lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall.

View Article and Find Full Text PDF

Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition.

View Article and Find Full Text PDF

Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one.

View Article and Find Full Text PDF

The Shannon entropy of a time series is a standard measure to assess the complexity of a dynamical process and can be used to quantify transitions between different dynamical regimes. An alternative way of quantifying complexity is based on state recurrences, such as those available in recurrence quantification analysis. Although varying definitions for recurrence-based entropies have been suggested so far, for some cases they reveal inconsistent results.

View Article and Find Full Text PDF

Background: Metabolic syndrome is highly prevalent in the adult population worldwide. Education may play an important role in preventing metabolic syndrome in young adults, especially those who are attending university. Such adults are at a critical point in their lives and make their own lifestyle choices that can affect their future health.

View Article and Find Full Text PDF

We study the emergence of coherence in complex networks of mutually coupled nonidentical elements. We uncover the precise dependence of the dynamical coherence on the network connectivity, the isolated dynamics of the elements, and the coupling function. These findings predict that in random graphs the enhancement of coherence is proportional to the mean degree.

View Article and Find Full Text PDF