Publications by authors named "Deniz Bas"

Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention.

View Article and Find Full Text PDF
Article Synopsis
  • PKU is a genetic disorder resulting from issues with the phenylalanine hydroxylase enzyme, leading to high phenylalanine levels that harm the nervous system and cause mental impairment.
  • Current PKU diagnostic methods are complex and expensive, but simpler electrochemical detection methods show promise for being more efficient and accurate.
  • The study evaluated different nanomaterial-modified electrodes, finding that the electrochemically reduced graphene oxide gold electrode (ERGO) had the best sensitivity and detection capabilities for assessing phenylalanine levels in blood samples.
View Article and Find Full Text PDF

Enzyme-modified cheese (EMC), a cheese flavor additive with high-fat content, is preferably produced in powder form because of its long shelf-life and high industrial applicability. The physical properties of additives, especially with high-fat contents, are very important for their industrial usage, and the spray drying process conditions substantially determine the physical properties of powders. In this study, optimization of the spray drying process during the production of EMC powder was performed to improve the powder physical properties.

View Article and Find Full Text PDF

New methods to identify trace amount of food components and/or contaminants (infectious pathogens and chemicals) rapidly, accurately, and with high sensitivity are in constant demand to prevent foodborne illnesses. Multipurpose biofunctionalized engineered nanomaterials are very promising for the detection of food components and contaminants. The unique optical and magnetic properties of the nanoscale materials are very useful in the analysis of food.

View Article and Find Full Text PDF

A competitive DNA hybridization assay based on the photoelectrochemistry of the semiconductor quantum dot-single stranded DNA conjugates (QD-ssDNA) was developed. Hybridization of QD-ssDNA with the capture probe DNA immobilized on the indium-tin oxide electrodes enables photocurrent generation when the electrochemical cell was illuminated with a light source. Upon the competition between QD-ssDNA and single-stranded target DNA, the photocurrent response decreased with the increase in the target DNA concentration.

View Article and Find Full Text PDF