Publications by authors named "Denissenko M"

Our study probed the effects of the beta-2 adrenergic agonist, formoterol and the macrolide antibiotic, roxithromycin, on muscle wasting in a well-characterized animal model of cancer cachexia. Female Wistar rats were inoculated with Yoshida AH130 ascites hepatoma (AH) cells to induce rapid and severe cachexia as demonstrated by wet weight determinations of the hearts, gastrocnemius muscles and carcasses. The control animals received saline (vehicle) inoculations.

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation. Their abundance and the ease with which they can be assayed have lead to their use in applications beyond simple genotyping. One such application is the quantitative determination of transcript levels associated with distinct alleles or haplotypes found in promoters and coding regions of genes.

View Article and Find Full Text PDF

We identified previously a region on chromosome 19p13.2 spanning the genes encoding the intercellular adhesion molecules (ICAM), ICAM1, ICAM4 and ICAM5 as a breast cancer susceptibility locus. Genetic variants in this region were also associated with indicators of disease severity, including higher rates of metastases to other organs.

View Article and Find Full Text PDF

A genome-wide case-control association study done in our laboratory has identified a single nucleotide polymorphism located in RAD21 as being significantly associated with breast cancer susceptibility. RAD21 is believed to function in sister chromatid alignment as part of the cohesin complex and also in double-strand break (DSB) repair. Following our initial finding, expression studies revealed a 1.

View Article and Find Full Text PDF

To find genes that underlie disease susceptibilities, genome-wide single nucleotide polymorphisms (SNPs) have been analyzed using high-throughput matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). As a proof-of-concept for this approach, gene regions have been identified that were previously associated by others with certain diseases or traits. On the same technology platform, accurate and absolute transcriptional profiling can be performed and applied to allele expression analysis.

View Article and Find Full Text PDF

Oxidative stress to DNA is recognized as one of the mechanisms for the carcinogenic effects of some environmental agents. Numerous studies have been conducted in an attempt to document the fact that chemical carcinogens that are thought to induce production of oxidants also cause the formation of oxidative DNA lesions. Although many DNA adducts continue to be useful biomarkers of dose/effect, changes in gene expression have been proposed to be a practical novel tool for studying the role of chemically induced oxidative DNA damage.

View Article and Find Full Text PDF

The challenge in the postgenome era is to measure sequence variations over large genomic regions in numerous patient samples. This massive amount of work can only be completed if more accurate, cost-effective, and high-throughput solutions become available. Here we describe a novel DNA fragmentation approach for single nucleotide polymorphism (SNP) discovery and sequence validation.

View Article and Find Full Text PDF

It is estimated that cigarette smoking kills over 1 000 000 people each year by causing lung cancer as well as many other neoplasmas. p53 mutations are frequent in tobacco-related cancers and the mutation load is often higher in cancers from smokers than from nonsmokers. In lung cancers, the p53 mutational patterns are different between smokers and nonsmokers with an excess of G to T transversions in smoking-associated cancers.

View Article and Find Full Text PDF

Genomic injury induced by environmental carcinogens, such as polycyclic aromatic hydrocarbons and aromatic amines, is the initial step that can trigger mutagenesis and carcinogenesis. In addition to the physico-chemical property of DNA damaging agents, several important factors such as primary sequence, chromatin structure, methylation, protein association, and transcriptional activity can affect not only the initial level and distribution of DNA damage but also the efficiency of repair. Therefore, mapping the DNA damage induced by environmental agents in cancer-related genes such as p53 and ras at the sequence level provides essential information for assessing their carcinogenic potential.

View Article and Find Full Text PDF

Chemical and enzymatic approaches were used to produce polynucleotide fragments containing acid-labile internucleotide P3'-N5' phosphoramidate bonds, either in a surface-bound form or in solution. The primer extension reaction utilizing 5'-amino-5'-deoxynucleoside 5'-triphosphates generates polynucleotides that can be fragmented into short, easy-to-analyze pieces simply by being premixed with the acidic matrices typically used for MALDI-TOF mass spectrometry of nucleic acids. This leads to detection procedures that are simple, robust and easy to automate.

View Article and Find Full Text PDF

Elevated and sustained cell replication, together with a decrease in apoptosis, is considered to be the main mechanism of hepatic tumor promotion due to peroxisome proliferators. In contrast, the role of oxidative stress and DNA damage in the carcinogenic mechanism is less well understood. In view of possible induction of DNA damage by peroxisome proliferators, DNA repair mechanisms may be an important factor to consider in the mechanism of action of these compounds.

View Article and Find Full Text PDF

The methylpurine-DNA glycosylase (MPG) gene coding for human 3-methyladenine (3-meAde)-DNA glycosylase functions in the first step of base excision repair (BER) to remove numerous damaged bases including 3-meGua, ethenoadenine, and hypoxanthine (Hx) in addition to 3-meAde. In this report, we identify the length of the minimal MPG promoter region, demonstrate the involvement of several transcription factors in expression of the MPG gene, and determine the point at which transcription initiates. We also demonstrate that control of MPG expression is linked to MPG activity.

View Article and Find Full Text PDF

Background: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in combustion products of organic matter, including cigarette smoke. Metabolically activated diol epoxides of these compounds, including benzo[a]pyrene diol epoxide (B[a]PDE), have been suggested as causative agents in the development of lung cancer. We previously mapped the distribution of B[a]PDE adducts within the p53 tumor suppressor gene (also known as TP53), which is mutated in 60% of human lung cancers, and found that B[a]PDE adducts preferentially form at lung cancer mutational hotspots (codons 154, 157, 158, 245, 248, and 273).

View Article and Find Full Text PDF

We have used the UvrABC nuclease incision method in combination with ligation-mediated polymerase chain reaction (LMPCR) techniques to map and quantify (+/-)anti-7beta, 8alpha-dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]-pyrene (BPDE) adduct formation in the p53 gene of human cells. We found that BPDE adduct formation, as revealed by UvrABC incision, preferentially occurred at methylated CpG sites that correspond to the mutational hotspots observed in human lung cancers. Our hypothesis is that it is this methylated CpG sequence-dependent preferential adduct formation, rather than selective growth advantage, that is the major determinant of the p53 mutation pattern in human cancers.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a mutagenic and carcinogenic mycotoxin which may play a role in the etiology of human liver cancer. In vitro studies have shown that AFB1 adducts form primarily at the N7 position of guanine. Using quantitative PCR (QPCR) and ligation-mediated PCR (LMPCR), we have mapped total AFB1 adducts in genomic DNA treated with AFB1-8,9-epoxide and in hepatocytes exposed to AFB1 activated by rat liver microsomes or human liver and enterocyte microsomal preparations.

View Article and Find Full Text PDF

Ligation-mediated polymerase chain reaction (LMPCR) is a PCR-based method for the detection of DNA adducts at individual nucleotide positions in mammalian genes. Adduct-specific enzymes, such as T4 endonuclease V, various base excision repair enzymes, UvrABC nuclease, and chemical cleavage techniques can be used to convert the adducts into DNA strand breaks. The positions of these breaks are then detected by LMPCR.

View Article and Find Full Text PDF

Sequence-dependent formation and lack of repair of polycyclic aromatic hydrocarbon-induced DNA adducts correlates well with the positions of p53 mutational hotspots in smoking-related lung cancers (Denissenko et al, 1996, 1998). The mycotoxin aflatoxin B1 (AFB1) is considered to be a major causative agent in hepatocellular carcinoma (HCC) in regions with presumed high food contamination by AFB1. A unique mutational hotspot, a G to T transversion at the third base of codon 249 of the p53 gene is observed in these tumors.

View Article and Find Full Text PDF

The number and diversity of mutations in the p53 mutation data base provides indirect evidence that implicates environmental mutagens in human carcinogenesis. The p53 gene has a large mutational target size; more than 280 out of 393 amino acids are found mutated in tumors. We argue that there is possibly a limited involvement of selection for specific mutations in the central domain of the protein, and that the distribution of DNA damage along the p53 gene caused by environmental carcinogens can be correlated with the mutational spectra, i.

View Article and Find Full Text PDF

Using UvrABC incision in combination with ligation-mediated PCR (LMPCR) we have previously shown that benzo(a)pyrene diol epoxide (BPDE) adduct formation along the nontranscribed strand of the human p53 gene is highly selective; the preferential binding sites coincide with the major mutation hotspots found in human lung cancers. Both sequence-dependent adduct formation and repair may contribute to these mutation hotspots in tumor tissues. To test this possibility, we have extended our previous studies by mapping the BPDE adduct distribution in the transcribed strand of the p53 gene and quantifying the rates of repair for individual damaged bases in exons 5, 7, and 8 for both DNA strands of this gene in normal human fibroblasts.

View Article and Find Full Text PDF

The most prevalent DNA lesion induced by UV irradiation is the cyclobutane pyrimidine dimer (CPD), which forms at positions of neighboring pyrimidines. Here we show that the rare DNA base 5-methylcytosine is the preferred target for CPD formation when cells are irradiated with natural sunlight. We have mapped the distribution of CPDs formed in normal human keratinocytes along exons of the p53 gene.

View Article and Find Full Text PDF

In the P53 tumor suppressor gene, a remarkably large number of somatic mutations are found at methylated CpG dinucleotides. We have previously mapped the distribution of (+/-) anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy -7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) adducts along the human P53 gene [Denissenko, M. F.

View Article and Find Full Text PDF

The rapid accumulation of the p53 gene product is considered to be an important component of the cellular response to a variety of genotoxins. In order to gain insights on the biochemical pathways leading to p53 stabilization, the effect of (+/-) 7,8-dihydroxy-anti-9, 10-epoxy-7,8,9,10-tetrahydrobenzo(a)-pyrene [(+/-)-anti-BPDE] induced DNA damage on p53 protein levels was investigated in various repair-proficient and repair-deficient human cells. Brief exposure of normal human fibroblasts to 0.

View Article and Find Full Text PDF

Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273.

View Article and Find Full Text PDF