Polyurethane (PU) has been used in a variety of industries during the past few years due to its exceptional qualities, including strong mechanical strength, good abrasion resistance, toughness, low-temperature flexibility, etc. More specifically, PU is easily "tailored" to satisfy particular requirements. There is a lot of potential for its use in broader applications due to this structure-property link.
View Article and Find Full Text PDFAn experimental and analytical approach to the relaxation problem of wood-based materials-OSB (Oriented Strand Boards-pressed wood-based composite panels) beams, including beams with CFRP (Carbon fiber reinforced polymer) tape composite reinforcement, is presented. It is a relevant engineering and scientific problem due to the fact that wood and wood-based materials, as well as composite reinforcements, are widely used in building constructions. Their rheological properties are very important and complicated to estimate.
View Article and Find Full Text PDFThe paper presents an analysis of the rheological properties of a selected viscoelastic material, which is dedicated to the reduction of vibrations in structures subjected to dynamic loads. A four-parameter, fractional Zener model was used to describe the dynamic behavior of the tested material. The model parameters were identified on the basis of laboratory tests performed at different temperatures and for different vibration frequencies.
View Article and Find Full Text PDFConcrete is the most widely used construction material nowadays. We are concerned with the computational modelling and laboratory testing of high-performance concrete (HPC). The idea of HPC is to enhance the functionality and sustainability of normal concrete, especially by its greater ductility as well as higher compressive, tensile, and flexural strengths.
View Article and Find Full Text PDFClin Biomech (Bristol)
February 2016
Background: The object of the study was to assess the impact of one-level stabilization of the cervical spine for both anterior static and dynamic plates. Segments C2-C6 of the cervical spine, were investigated, from which was determined the stress and strain fields in the region of implantation and adjacent motion segments. The purpose was the comparison of changes that affect the individual stabilizers.
View Article and Find Full Text PDF