The oxidation of carbon monoxide with nitrous oxide on mass-selected Au(3)(+) and Ag(3)(+) clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au(3)(+) the cluster itself acts as reactive species that facilitates the formation of CO(2) from N(2)O and CO, for silver the oxidized clusters Ag(3)O(x)(+) (n=1-3) are identified as active in the CO oxidation reaction.
View Article and Find Full Text PDFTemperature-dependent gas-phase reaction kinetics measurements and equilibrium thermodynamics under multicollision conditions in conjunction with ab initio DFT calculations were employed to determine the binding energies of carbon monoxide to triatomic silver-gold binary cluster cations and anions. The binding energies of the first CO molecule to the trimer clusters increase with increasing gold content and with changing charge from negative to positive. Thus, the reactivity of the binary clusters can be sensitively tuned by varying charge state and composition.
View Article and Find Full Text PDFThe binding energies of multiple CO molecules to five-atom silver-gold cluster cations have been obtained employing temperature dependent gas phase ion trap measurements and ab initio calculations. The CO binding energies to Ag(n)Au(m)(+) (n + m = 5) decrease with increasing number of silver atoms. Most strikingly, after the adsorption of the fourth CO to Au(5)(+) and of the third CO to Ag(5)(+), respectively, a pronounced decrease in the binding energies of further CO molecules was observed.
View Article and Find Full Text PDFA detailed analysis of experimentally obtained temperature-dependent gas-phase kinetic data for the oxygen and carbon monoxide adsorption on small anionic gold (Au(n)(-), n = 1-3), silver (Ag(n)(-), n = 1-5), and binary silver-gold (Ag(n)Au(m)(-), n + m = 2, 3) clusters is presented. The Lindemann energy transfer model in conjunction with statistical unimolecular reaction rate theory is employed to determine the bond dissociation energies E(0) of the observed metal cluster complexes with O(2) and CO. The accuracy limits of the obtained binding energies are evaluated by applying different transition-state models.
View Article and Find Full Text PDFFemtosecond nuclear dynamics of mass-selected neutral Ag2 and Ag2O2 clusters are investigated with the 'negative ion-to neutral-to positive ion'(NeNePo) technique. For the bare silver dimer, wave packet dynamics occurring in the neutral electronic ground state and in the first excited triplet state are observed after photodetachment from the anion with 3.05 eV photon energy.
View Article and Find Full Text PDFThe ultrafast dynamics of the bimetallic cluster Ag2Au is investigated by pump-probe negative ion-to-neutral-to-positive ion (NeNePo) spectroscopy. Preparation of the neutral cluster in a highly nonequilibrium state by electron detachment from the mass-selected anion, and subsequent probing of the neutral nuclear dynamics through two-photon ionization to the cationic state, leads to strongly probe-energy-dependent transient cation-abundance signals. The origin of this pronounced time and wavelength dependence of the ionization probability on the femtosecond scale is revealed by ab initio theoretical simulations of the transient spectra.
View Article and Find Full Text PDFReactions of free silver anions Agn- (n = 1 - 13) with O2, CO, and their mixtures are investigated in a temperature controlled radio frequency ion trap setup. Cluster anions Agn- (n = 1 - 11) readily react with molecular oxygen to yield AgnOm- (m = 2, 4, or 6) oxide products. In contrast, no reaction of the silver cluster anions with carbon monoxide is detected.
View Article and Find Full Text PDFA novel size dependence in the adsorption reaction of multiple O2 molecules onto anionic silver clusters Agn- (n = 1-5) is revealed by gas-phase reaction studies in an rf-ion trap. Ab initio theoretical modeling based on DFT method provides insight into the reaction mechanism and finds cooperative electronic and structural effects to be responsible for the size selective reactivity of Agn- clusters toward one or more O2. In particular, Agn- clusters with odd n have paired electrons and therefore bind one O2 only weakly, but they are simultaneously activated to adsorb a strongly bound second oxygen molecule.
View Article and Find Full Text PDF