Brain metastasis in breast cancer remains difficult to treat and its incidence is increasing. Therefore, the development of new therapies is of utmost clinical relevance. Recently, toll-like receptor (TLR) 4 was correlated with IL6 expression and poor prognosis in 1 215 breast cancer primaries.
View Article and Find Full Text PDFMicroglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock.
View Article and Find Full Text PDFMicroglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia.
View Article and Find Full Text PDFThe putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis.
View Article and Find Full Text PDFThe metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions.
View Article and Find Full Text PDFThe sentinel and immune functions of microglia require rapid and appropriate reactions to infection and damage. Their Toll-like receptors (TLRs) sense both as threats. However, whether activated microglia mount uniform responses or whether subsets conduct selective tasks is unknown.
View Article and Find Full Text PDFLaquinimod (LAQ) is a new oral immunomodulatory compound that reduces relapse rate, brain atrophy and disability progression in multiple sclerosis (MS). LAQ has well-documented effects on inflammation in the periphery, but little is known about its direct activity within the central nervous system (CNS). To elucidate the impact of LAQ on CNS-intrinsic inflammation, we investigated the effects of LAQ on cuprizone-induced demyelination in mice in vivo and on primary CNS cells in vitro.
View Article and Find Full Text PDFBackground: Patients with malignancies often suffer from thrombembolic events that complicate the course of cancer disease and reduce the patients' quality of life or shorten the survival time in severe cases. This phenomenon is also known for patients with primary or secondary brain tumors; but the reasons are not identified.
Methods: We performed a prospective case-controlled study of patients with brain metastases but without any active peripheral tumor site.
The transfer of antigens from oligodendrocytes to immune cells has been implicated in the pathogenesis of autoimmune diseases. Here, we show that oligodendrocytes secrete small membrane vesicles called exosomes, which are specifically and efficiently taken up by microglia both in vitro and in vivo. Internalisation of exosomes occurs by a macropinocytotic mechanism without inducing a concomitant inflammatory response.
View Article and Find Full Text PDFToll-like receptor (TLR) 4 responds to a range of agonists in infection and injury, but is best known for the recognition of bacterial lipopolysaccharides (LPS). Assembly in heterologous receptor complexes as well as signaling through both MyD88 and TRIF adaptor proteins, as unmatched by other TLRs, could underlie its versatile response options, probably also in a cell type-dependent manner. We show that microglia, the CNS macrophages, react to diverse LPS variants, including smooth (S) and rough (R) LPS chemotypes, with cytokine/chemokine induction, MHC I expression and suppression of myelin phagocytosis.
View Article and Find Full Text PDFAlthough there is increasing evidence that blood-derived macrophages support tumor progression, it is still unclear whether specialized resident macrophages, such as brain microglia, also play a prominent role in metastasis formation. Here, we show that microglia enhance invasion and colonization of brain tissue by breast cancer cells, serving both as active transporters and guiding rails. This is antagonized by inactivation of microglia as well as by the Wnt inhibitor Dickkopf-2.
View Article and Find Full Text PDFMacrophages are key effectors in demyelinating diseases of the central and peripheral nervous system by phagocytosing myelin and releasing immunoregulatory mediators. Here, we report on a distinct, a priori anti-inflammatory reaction of macrophages phagocytosing myelin upon contact with damaged nerve tissue. Macrophages rapidly invaded peripheral (sciatic) and central (optic) nerve tissues in vitro, readily incorporated myelin and expressed high levels of phagocytosis-associated molecules (e.
View Article and Find Full Text PDFMicroglia--the macrophage equivalent of the CNS--safeguards and supports neuronal functions. Threats to the CNS homeostasis can trigger a rapid transformation of these cells from a normally "resting" into alerted and "activated" states. Microglia primarily serves the tissue defence and protection when participating in mechanisms of innate and adaptive immunity.
View Article and Find Full Text PDFThe serine protease thrombin is known as a blood coagulation factor. Through limited cleavage of proteinase-activated receptors it can also control growth and functions in various cell types, including neurons, astrocytes, and microglia (brain macrophages). A number of previous studies indicated that thrombin induces the release of proinflammatory cytokines and chemokines from microglial cells, suggesting another important role for the protease beyond hemostasis.
View Article and Find Full Text PDF