Publications by authors named "Denise Zacher"

The progressive liquid-phase layer-by-layer (LbL) growth of anisotropic multicomponent layer-based porous coordination polymers (PCPs) of the general formula [M(L)(P)(0.5)] (M: Cu(2+), Zn(2+); L: dicarboxylate linker; P: dinitrogen pillar ligand) was investigated by using either pyridyl- or carboxyl-terminated self-assembled monolayers (SAMs) on gold substrates as templates. It was found that the deposition of smooth, highly crystalline, and oriented multilayer films of these PCPs depends on the conditions at the early growth cycles.

View Article and Find Full Text PDF

Layer-selective installation of functional groups at SURMOFs (surface-attached metal-organic framework multilayers) is reported. Multilayers of [Cu(ndc)(dabco)(0.5)] grown in [001] orientation on pyridine-terminated organic self-assembled monolayers on Au substrates were functionalized with amino groups by step-by-step liquid-phase epitaxy.

View Article and Find Full Text PDF

In medical technologies concerning the surface immobilization of proteins in a defined orientation, maintaining their activity is a critical aspect. Therefore, in this study, the authors have investigated the activity of an elongated protein attached to a self-assembled monolayer supported streptavidin layer for different relative orientations of the protein with regard to the surface. Several mutants of this protein, human guanylate-binding protein 1 (hGBP1) showing GTPase catalytic activity, have been furnished with either one or two biotin anchors.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a fascinating class of novel inorganic-organic hybrid materials. They are essentially based on classic coordination chemistry and hold much promise for unique applications ranging from gas storage and separation to chemical sensing, catalysis, and drug release. The evolution of the full innovative potential of MOFs, in particular for nanotechnology and device integration, however requires a fundamental understanding of the formation process of MOFs.

View Article and Find Full Text PDF

One step at a time: The in situ monitoring of the step-by-step formation of metal-organic frameworks (MOFs) by using surface plasmon resonance (SPR), allows the nucleation process and the formation of the secondary building units to be investigated. Growth rates on functionalized organic surfaces with different crystallographic orientations can also be studied.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are highly porous materials generally consisting of two building elements: inorganic coupling units and organic linkers. These frameworks offer an enormous porosity, which can be used to store large amounts of gases and, as demonstrated in more recent applications, makes these compounds suitable for drug release. The huge sizes of the pores inside MOFs, however, also give rise to a fundamental complication, namely the formation of sublattices occupying the same space.

View Article and Find Full Text PDF

The fabrication of thin film coatings of metal-organic frameworks (MOFs) on various substrates is discussed in this critical review. Interestingly, the relatively few studies on MOF films that have appeared in the literature are limited to the following cases: [Zn4O(bdc)3] (MOF-5; bdc=1,4-benzenedicarboxylate), [Cu3(btc)2] (HKUST-1; btc=1,3,5-benzenetricarboxylate), [Zn2(bdc)2(dabco)] (dabco=1,4-diazabicyclo[2.2.

View Article and Find Full Text PDF

The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

The surface structure of an individual metal-organic framework (MOF) microcrystal grown on a functionalized surface has been successfully investigated for the first time in air and vacuum using high-resolution atomic force microscopy. Moreover, this detailed surface analysis has been utilized to optimize the MOF formation procedure to obtain a defect-free surface structure. Comparison of obtained data with recent microscopic studies performed on the same MOF crystal but grown by a conventional procedure clearly shows a much higher quality of crystals produced by surface oriented growth.

View Article and Find Full Text PDF