Health effects of long-term exposure to ultrafine particles (UFP) have not been investigated in epidemiological studies because of the lack of spatially resolved UFP exposure data. Short-term monitoring campaigns used to develop land use regression (LUR) models for UFP typically had moderate performance. The aim of this study was to develop and evaluate spatial and spatiotemporal LUR models for UFP and Black Carbon (BC), including their ability to predict past spatial contrasts.
View Article and Find Full Text PDFRecently, short-term monitoring campaigns have been carried out to investigate the spatial variation of air pollutants within cities. Typically, such campaigns are based on short-term measurements at relatively large numbers of locations. It is largely unknown how well these studies capture the spatial variation of long term average concentrations.
View Article and Find Full Text PDFFor many model organisms traditionally in use for cardiac electrophysiological studies, characterization of ion channel genes is lacking. We focused here on two genes encoding the inward rectifier current, KCNJ2 and KCNJ12, in the dog heart. A combination of RT-PCR, 5'-RACE, and 3'-RACE demonstrated the status of KCNJ2 as a two exon gene.
View Article and Find Full Text PDFRecent interest has focused on the health effects of ultrafine particles because of the documented toxicity and the larger concentration contrast near motorways of UFP than for PM10 or PM2.5. There are only few studies that have measured UFP at inner-city streets simultaneously with other PM components.
View Article and Find Full Text PDF