Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression.
View Article and Find Full Text PDFNetrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1.
View Article and Find Full Text PDFThe production of recombinant proteins for functional and biophysical studies, especially in the field of structural determination, still represents a challenge as high quality and quantities are needed to adequately perform experiments. This is in part solved by optimizing protein constructs and expression conditions to maximize the yields in regular flask expression systems. Still, work flow and effort can be substantial with no guarantee to obtain improvements.
View Article and Find Full Text PDFThe basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores.
View Article and Find Full Text PDFPP2A is an essential protein phosphatase that regulates most cellular processes through the formation of holoenzymes containing distinct regulatory B-subunits. Only a limited number of PP2A-regulated phosphorylation sites are known. This hampers our understanding of the mechanisms of site-specific dephosphorylation and of its tumor suppressor functions.
View Article and Find Full Text PDFNetrins, a family of laminin-related molecules, have been proposed to act as guidance cues either during nervous system development or the establishment of the vascular system. This was clearly demonstrated for netrin-1 via its interaction with the receptors DCC and UNC5s. However, mainly based on shared homologies with netrin-1, netrin-4 was also proposed to play a role in neuronal outgrowth and developmental/pathological angiogenesis via interactions with netrin-1 receptors.
View Article and Find Full Text PDFRecombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines.
View Article and Find Full Text PDFNetrin-1 has been shown to be up-regulated in a fraction of human cancers as a mechanism to allow these tumors to escape the pro-apoptotic activity of some of its main dependence receptors, the UNC5 homologs (UNC5H). Here we identify the V-2 domain of netrin-1 to be important for its interaction with the Ig1/Ig2 domains of UNC5H2. We generate a humanized anti-netrin-1 antibody that disrupts the interaction between netrin-1 and UNC5H2 and triggers death of netrin-1-expressing tumor cells in vitro.
View Article and Find Full Text PDFLaminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1N), α-5 (hLM α-5N) and β-3 (hLM β-3N) originating from the short arms of the human laminin αβγ heterotrimer.
View Article and Find Full Text PDF