Publications by authors named "Denise N Benoit"

Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer.

View Article and Find Full Text PDF

Gold nanobelts were synthesized by the reduction of tetrachloroauric acid with ascorbic acid in the presence of the surfactants cetyltrimethylammonium bromide and sodium dodecylsulfate. The resulting structures have rectangular cross sectional dimensions that are tens of nanometers and lengths that are tens to hundreds of micrometers. We find that the nanobelt yield and resulting structures are very sensitive to temperature which is likely due to the transition of the surfactant solution from wormlike micelles to spherical micelles.

View Article and Find Full Text PDF

Many of the solution phase properties of nanoparticles, such as their colloidal stability and hydrodynamic diameter, are governed by the number of stabilizing groups bound to the particle surface (i.e., grafting density).

View Article and Find Full Text PDF

Methods for synthesizing quantum dots generally rely on very high temperatures to both nucleate and grow core and core-shell semiconductor nanocrystals. In this work, we generate highly monodisperse ZnS and CdZnS shells on CdSe semiconductor nanocrystals at temperatures as low as 65 degrees C by enhancing the precursor solubility. Relatively small amounts of trioctylphosphine and trioctylphosphine oxide have marked effects on the solubility of the metal salts used to form shells; their inclusion in the precursor solutions, which use thiourea as a sulfur source, can lead to homogeneous and fully dissolved solutions.

View Article and Find Full Text PDF

The effective water dispersion of highly uniform nanoparticles synthesized in organic solvents is a major issue for their broad applications. In an effort to overcome this problem, iron oxide and cadmium selenide nanocrystals were surrounded by lipid bilayers to create stable, aqueous dispersions. The core inorganic particles were originally generated in oleic acid and 1-octadecene.

View Article and Find Full Text PDF