Introduction: endothelial dysfunction plays a critical role in the pathogenesis of hypertension. It is well established that physical training has beneficial effects on the cardiovascular system. We recently reported that angiotensin-(1-7) [Ang-(1-7)] concentration and the Mas receptor expression is increased in the left ventricle of trained spontaneous hypertensive rats (SHR).
View Article and Find Full Text PDFRecently, we demonstrated that the endothelium-dependent vasodilator effect of angiotensin(1-7) in the mouse aorta is abolished by genetic deletion of the G protein-coupled receptor encoded by the Mas protooncogene. To circumvent the limitations posed by the possible metabolism of Ang(1-7) in this vessel, in this work we studied the mechanism underlying the vasorelaxant effect of AVE 0991, a nonpeptide mimic of the effects of Ang(1-7), using wild-type and Mas-deficient mice. Ang(1-7) and AVE 0991 induced an equipotent concentration-dependent vasodilator effect in aortic rings from wild-type mice that was dependent on the presence of endothelium.
View Article and Find Full Text PDFThe renin-angiotensin system plays a critical role in blood pressure control and body fluid and electrolyte homeostasis. Besides angiotensin (Ang) II, other Ang peptides, such as Ang III [Ang-(2-8)], Ang IV [Ang-(3-8)], and Ang-(1-7) may also have important biological activities. Ang-(1-7) has become an angiotensin of interest in the past few years, because its cardiovascular and baroreflex actions counteract those of Ang II.
View Article and Find Full Text PDFAngiotensin-(1-7) [Ang-(1-7)] has biological actions that can often be distinguished from those of angiotensin II (Ang II). Recent studies indicate that the effects of Ang-(1-7) are mediated by specific receptor(s). We now report the partial characterization of a new antagonist selective for Ang-(1-7), D-Pro7-Ang-(1-7).
View Article and Find Full Text PDF1. The contribution of the local vascular production of angiotensin-(1-7) [Ang-(1-7)] to the control of alpha-adrenergic-induced contractions in the aorta of Sprague-Dawley (SD) and TGR(mRen-2)27 [mRen-2] rats was studied. 2.
View Article and Find Full Text PDF