Publications by authors named "Denise K Oseguera"

Purpose: Neoadjuvant combination immune checkpoint blockade and intralesional oncolytic virotherapy have the potential to activate antitumor responses in patients with breast cancer.

Experimental Design: Eligibility for this pilot phase I trial included patients with localized HER2-negative breast cancer who received systemic nivolumab and ipilimumab and intratumor talimogene laherparepvec (T-VEC; NCT04185311). The primary objective was to evaluate the safety and adverse event profile of immunotherapy combined with T-VEC in patients with localized, HER2-negative breast cancer.

View Article and Find Full Text PDF

Background: Several single center studies have provided evidence of immune activation and antitumor activity of therapeutic vaccination with dendritic cells (DC) in patients with metastatic melanoma. The efficacy of this approach in patients with favorable prognosis metastatic melanoma limited to the skin, subcutaneous tissues and lung (stages IIIc, M1a, M1b) was tested in a multicenter two stage phase 2 study with centralized DC manufacturing.

Methods: The vaccine (IDD-3) consisted 8 doses of autologous monocyte-derived matured DC generated in serum-free medium with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-13 (IL-13), pulsed with lysates of three allogeneic melanoma cell lines, and matured with interferon gamma.

View Article and Find Full Text PDF

Purpose: Tumor antigen-loaded dendritic cells (DC) are believed to activate antitumor immunity by stimulating T cells, and CTL-associated antigen 4 (CTLA4)-blocking antibodies should release a key negative regulatory pathway on T cells. The combination was tested in a phase I clinical trial in patients with advanced melanoma.

Experimental Design: Autologous DC were pulsed with MART-1(26-35) peptide and administered with a dose escalation of the CTLA4-blocking antibody tremelimumab.

View Article and Find Full Text PDF

We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1-specific CD+8 and CD4+ T cells. Metastatic melanoma patients received 3 injections of 10(6) or 10(7) DCs, delivered intradermally.

View Article and Find Full Text PDF