Publications by authors named "Denise Hoban"

Maize plants containing event DP-2Ø2216-6 (DP202216), which confers herbicide tolerance through expression of phosphinothricin acetyltransferase and enhanced grain yield potential via temporal modulation of the native ZMM28 protein, were developed for commercialization. To address current regulatory expectations, a mandatory 90-day rodent feeding study was conducted to support the safety assessment. Diets containing 50% by weight of ground maize grain from DP202216, non-transgenic control, and 3 non-transgenic reference varieties, were fully characterized, along with the grain, and diets were fed to Crl:CD®(SD) rats for at least 90 days.

View Article and Find Full Text PDF

The potential health effects of meal and oil processed from seed of genetically modified (GM) canola plants (OECD unique identifier: DP-Ø73496-4; hereafter referred to as 73496 canola) containing an insert that expresses the GAT4621 protein conferring tolerance to nonselective herbicidal ingredient glyphosate were evaluated in a subchronic rodent feeding study. Sprague-Dawley rats (12/sex/group) were administered diets containing dehulled, defatted toasted canola meal (DH meal) and refined/bleached/deodorized canola oil (RBD oil) processed from seed of plants that were untreated (73496), sprayed in-field with glyphosate (73496GLY), the non-transgenic near-isogenic (091; control), or one of four commercially available non-GM reference canola varieties (45H72, 45H73, 46A65, 44A89). All diets were formulated as a modification of the standard laboratory chow PMI® Nutrition International, LLC Certified Rodent LabDiet® 5002 (PMI® 5002).

View Article and Find Full Text PDF

The results from a subchronic feeding study conducted in Sprague–Dawley rats fed with diets containing grain from 4114 (OECD unique identifier: DP-ØØ4114-3) maize that was untreated (4114) or sprayed in field with glufosinate ammonium (4114GLU) in a design similar to previous studies are reported. The test material, 4114 maize, is a hybrid maize produced by transformation with a DNA construct encoding 4 different transgenic proteins for resistance to lepidopteran pests, coleopteran pests, and tolerance to the herbicidal active ingredient glufosinate ammonium. There were a total of 144 rats divided into 12 groups of 12 rats/sex/group.

View Article and Find Full Text PDF

This 13-week feeding study conducted in Sprague-Dawley rats evaluated the potential health effects from long-term consumption of a rodent diet formulated with grain from genetically modified (GM), herbicide-tolerant maize DP-Ø9814Ø-6 (98140; trade name Optimum GAT (Optimum GAT is a registered trademark of Pioneer Hi-Bred)). Metabolic inactivation of the herbicidal active ingredient glyphosate was conferred by genomic integration and expression of a gene-shuffled acetylase coding sequence, gat4621, from Bacillus licheniformis; tolerance to acetolactate synthase (ALS) inhibiting herbicides was conferred by overexpression of a modified allele (zm-hra) of the endogenous maize ALS enzyme that is resilient to inactivation. Milled maize grain from untreated (98140) and herbicide-treated (98140+Gly/SU) plants, the conventional non-transgenic, near-isogenic control (091), and three commercial non-transgenic reference hybrids (33J56, 33P66, and 33R77) was substituted at concentrations of 35-38% w/w into a common rodent chow formula (PMI) Nutrition International, LLC Certified Rodent LabDiet 5002) and fed to rats (12/sex/group) for at least 91 consecutive days.

View Article and Find Full Text PDF

DAS-Ø15Ø7-1xDAS-59122-7 (1507x59122) is a genetically modified (GM) maize hybrid that was produced by crossing of two GM maize inbreds; DAS-Ø15Ø7-1 and DAS-59122-7. This hybrid cross expresses four transgenic proteins: Cry1F and PAT (from DAS-Ø15Ø7-1) and Cry34Ab1/Cry35Ab1 and PAT (from DAS-59122-7) that confer resistance to lepidopteran and coleopteran pests and tolerance to the herbicidal active ingredient glufosinate-ammonium. The current subchronic feeding study was conducted in Sprague-Dawley rats to evaluate the potential health effects of long-term consumption of a rodent diet containing 1507x59122 maize grain compared with a diet containing maize grain from its near-isogenic control (091).

View Article and Find Full Text PDF

DP-3Ø5423-1 (305423) is a genetically-modified (GM) soybean that was produced by biolistic insertion of a gm-fad2-1 gene fragment and the gm-hra gene into the germline of soybean seeds. The gm-fad2-1 gene fragment cosuppresses expression of the endogenous FAD2-1 gene encoding the seed-specific omega-6 fatty acid desaturase resulting in higher concentrations of oleic acid (18:1) relative to linoleic acid (18:2). The gm-hra gene encoding a modified acetolactate synthase (ALS) enzyme was used as a selectable marker.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are environmentally widespread and persistent chemicals with multiple toxicities reported in experimental animals and humans. These compounds can trigger biological activity by activating the alpha isotype of peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors that regulate gene expression; however, some biological effects may occur independently of the receptor. Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) modulates lipid and glucose homeostasis, cell proliferation and differentiation, and inflammation.

View Article and Find Full Text PDF

Repeated high doses of ammonium perfluorooctanoate (APFO) have been reported to affect immune system function in mice. To examine dose-response characteristics in both rats and mice, male CD rats and CD-1 mice were dosed by oral gavage with 0.3-30 mg/kg/day of linear APFO for 29 days.

View Article and Find Full Text PDF

The mouse local lymph node assay (LLNA) has become the preferred test for evaluating the dermal sensitization potential of chemicals and requirements are now emerging for its use in the evaluation of their formulated products, especially in the European Union. However, despite its widespread use and extensive validation, the use of this assay for directly testing mixtures and formulated products has been questioned, which could lead to repeat testing using multiple animal models. As pesticide formulations are typically a specific complex blend of chemicals for use as aqueous-based dilutions, traditional vehicles prescribed for the LLNA may change the properties of these formulations leading to inaccurate test results and hazard identification.

View Article and Find Full Text PDF

Optimum GAT1 soybean is a genetically modified (GM) soybean containing event DP-356Ø43-5 (356043) that was produced by integration of the coding sequences of the GAT4601 and GM-HRA proteins. In planta expression of these proteins confers tolerance to glyphosate and sulfonylurea/imidazolinone herbicides, respectively. This paper reports the results from a subchronic rat feeding study conducted with 356043 soybeans.

View Article and Find Full Text PDF