Publications by authors named "Denise Freitas Siqueira Petri"

A feature in neurodegenerative disorders is the loss of neurons, caused by several factors including oxidative stress induced by reactive oxygen species (ROS). In this work, static magnetic field (SMF) was applied in vitro to evaluate its effect on the viability, proliferation, and migration of human neuroblastoma SH-SY5Y cells, and on the toxicity induced by hydrogen peroxide (HO), tert-butyl hydroperoxide (tBHP), HO/sodium azide (NaN) and photosensitized oxidations by photodynamic therapy (PDT) photosensitizers. The SMF increased almost twofold the cell expression of the proliferation biomarker Ki-67 compared to control cells after 7 days of exposure.

View Article and Find Full Text PDF

Hydroxypropyl methylcellulose (HPMC) belongs to the cellulose ether family that has hydroxyl groups substituted by hydrophobic methyl groups (DS) and hydrophilic hydroxypropyl groups (MS). Herein, the interactions between water molecules and cryogels prepared with HPMC in the presence and absence of a linear nonionic surfactant, as well as CaO microparticles, which react with water producing O, were systematically investigated by sorption experiments and Time-Domain Nuclear Magnetic Resonance. Regardless of the DS and MS, most water molecules presented transverse relaxation time t2 typical of intermediate water and a small population of more tightly bound water.

View Article and Find Full Text PDF

Hydrogels of poly(vinyl alcohol) (PVA)/sodium alginate (SA), and magnetic nanoparticles (MNPs) were prepared by solvent casting in the absence and in the presence of magnets, in order to obtain MNPs distributed randomly (PVA/SA-rMNP) and magnetically oriented MNPs (PVA/SA-gMNP) in the polymer matrix. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques were used to evaluate the topography and to map the distribution of magnetic domains in the polymer matrix, respectively. The tip-surface distance (lift distance) of 50 nm during the MFM analyses facilitated the mapping of magnetic domains because the van der Waals forces were minimized.

View Article and Find Full Text PDF

Adsorbents made of hydroxypropyl methylcellulose (HPMC) and sugarcane bagasse (BG) microparticles were applied for the separation of 17α-ethinylestradiol (EE2) from aqueous solution in batch, and from aqueous solution and freshwater in fixed-bed columns. HPMC chains and BG microparticles were crosslinked by the esterification with citric acid. The adsorbents presented compression modulus values that increased from 208 ± 20 kPa (pure HPMC) to 917 ± 90 kPa, when the content of BG particles added to HPMC was 50 wt% (HPMC50BG).

View Article and Find Full Text PDF

Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels.

View Article and Find Full Text PDF

The simultaneous removal of organic and inorganic pollutants from water requires multifunctional adsorbents. Cryogels of carboxymethyl cellulose (CMC) and sugarcane bagasse (BG) were modified with cetyltrimethylammonium bromide (CTAB) micelles for the adsorption of methylene blue (MB), Cr(VI) ions and bisphenol A (BPA) separately, in binary or ternary aqueous mixtures. Batch adsorption studies of MB and Cr(VI) and BPA on the CMCBG-CTAB adsorbents indicated removal capacities of 100%, 70% and 95%, respectively.

View Article and Find Full Text PDF

Protein/peptide-based hydrogel biomaterial inks with the ability to incorporate various cells and mimic the extracellular matrix's function are promising candidates for 3D printing and biomaterials engineering. This is because proteins contain multiple functional groups as reactive sites for enzymatic, chemical modification or physical gelation or cross-linking, which is essential for the filament formation and printing processes in general. The primary mechanism in the protein gelation process is the unfolding of its native structure and its aggregation into a gel network.

View Article and Find Full Text PDF

Purpose: To design and analyze the biologic properties (antibacterial and antifungal, as well as cytotoxicity) of a dental biomaterial based on incorporation of the biocide poly(diallyldimethylammonium chloride) (PDADMAC) into the masses of self- and thermopolymerizable acrylic resins.

Materials And Methods: PDADMAC was diluted into tetrahydrofuran (4 wt%) and incorporated into self- and thermopolymerizable acrylic resins. PDADMAC inclusion was verified by measuring the contact angle with water droplets.

View Article and Find Full Text PDF

Hybrid nanoparticles of poly(methylmethacrylate) synthesized in the presence of poly (diallyldimethyl ammonium) chloride by emulsion polymerization exhibited good colloidal stability, physical properties, and antimicrobial activity but their synthesis yielded poor conversion. Here we create antimicrobial coatings from casting and drying of the nanoparticles dispersions onto model surfaces such as those of silicon wafers, glass coverslips, or polystyrene sheets and optimize conversion using additional stabilizers such as cetyltrimethyl ammonium bromide, dioctadecyldimethyl ammonium bromide, or soybean lecithin during nanoparticles synthesis. Methodology included dynamic light scattering, determination of wettability, ellipsometry of spin-coated films, scanning electron microscopy, and determination of colony forming unities (log CFU/mL) of bacteria after 1 h interaction with the coatings.

View Article and Find Full Text PDF

Magnetic responsive hydrogels composed of alginate (Alg) and xanthan gum (XG), crosslinked with Ca ions, were modified by in situ magnetic nanoparticles (MNP) formation. In comparison to magnetic Alg hydrogels, magnetic Alg-XG hydrogels presented superior mechanical and swelling properties, due to the high charge density and molecular weight of XG. The loading efficiency of levodopa (LD), an important antiparkinson drug, in the Alg-XG/MNP hydrogels was the highest (64%), followed by Alg/MNP (56%), Alg-XG (53%) and Alg (28%).

View Article and Find Full Text PDF

Sodium alginate (Alg) reacted with antibiotic gentamicin sulfate (GS) in an aqueous-phase condition mediated by carbodiimide chemistry, in the molar ratios Alg: GS of (1:0.5), (1:1) and (1:2). The Alg-GS conjugated derivatives were characterized by elemental analysis for nitrogen content, Fourier transform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analyses (TGA) and water sorption measurements.

View Article and Find Full Text PDF

Hydroxypropyl methylcellulose (HPMC) and xyloglucan (XG) crosslinked with citric acid over a range of HPMC/XG weight ratios formed sustainable blend films characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, tensile tests, circular dichroism and determination of inhibitory activity against Staphylococcus aureus and Escherichia coli. Both in solution and in the crosslinked films, HPMC chains lost the original ordered conformation upon interacting with XG, giving rise to an entropic gain. The highest values of tensile strength (25MPa) and Young's modulus (689MPa) occurred for the 50:50 HPMC/XG blend films.

View Article and Find Full Text PDF

Hybrid beads composed of magnetite nanoparticles (MNP) and alginate (Alg) were synthesized and coded as Alg-MNP. They were incubated in dopamine (DOPA) solution (5 g/L), at pH 7.4 and 8 °C, during 12 h, promoting the DOPA loaded magnetic beads, coded as Alg-MNP/DOPA.

View Article and Find Full Text PDF

Background: Several cationic polymers exhibit a useful antimicrobial property, however the structure-activity relationship still requires a more complete investigation. The main objective of this work is the comparison between the antimicrobial activity and toxicity of free and immobilized poly (diallyldimethylammonium) chloride (PDDA) in biocompatible poly (methylmethacrylate) (PMMA) nanoparticles (NPs).

Results: NPs synthesis by emulsion polymerization is performed over a range of [PDDA] at two methylmethacrylate (MMA) concentrations.

View Article and Find Full Text PDF

Polypyrrole (PPy) was electropolymerized in xanthan hydrogels (XCA), resulting in electroactive XCAPPy scaffolds with (15 ± 3) wt.% PPy and (40 ± 10) μm thick. The physicochemical characterization of hybrid XCAPPy scaffolds was performed by means of cyclic voltammetry, swelling tests, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM) and tensile tests.

View Article and Find Full Text PDF

In this work xanthan-nanohydroxyapatite (XnHAp) and its equivalent strontium substituted (XnHApSr) were synthesized by the precipitation of nanohydroxyapatite in xanthan aqueous solution, characterized and compared to conventional hydroxyapatite particles (HAp). XnHAp and XnHApSr were less crystalline than HAp, as revealed by X-ray diffraction. Xanthan chains enriched the surface of XnHAp and XnHApSr particles, increasing the zeta potential values from -(7±1)mV, determined for HAp, to -(17±3)mV and -(25±3)mV, respectively.

View Article and Find Full Text PDF

In this article the molecular conformation of xanthan chains in hydrogel films was investigated by means of circular dichroism, showing substantial differences between xanthan hydrogel prepared in the absence (XNT) and in the presence of citric acid (XCA). The xanthan chains in XNT hydrogels films presented ordered conformation (helixes), while in XCA they were in the disordered conformation (coils), exposing a larger number of carboxylate groups than XNT. The large charge density in XCA hydrogels was evidenced by their behavior under variable ionic strength.

View Article and Find Full Text PDF

We describe a fast and simple method to prepare composite films of magnetite nanoparticles and xanthan networks. The particles are distributed close to hybrid film surface, generating a coercivity of 27 ± 2 Oe at 300 K. The proliferation of fibroblast cells on the hybrid composites was successful, particularly when an external magnetic field was applied.

View Article and Find Full Text PDF

In this work xanthan chains were crosslinked by esterification reaction at 165 °C either in the absence or in the presence of citric acid. Higher crosslinking density was obtained using citric acid, as evidenced by its lower swelling degree. Tensiometry, a very precise and sensitive technique, was applied to study swelling rates and diffusion mechanisms of water, which was initially quasi-Fickian, controlled by wicking properties, changing to Fickian or Anomalous, depending on hydrogel composition.

View Article and Find Full Text PDF

The adsorption behavior of horseradish peroxidase (HRP) onto hybrid particles of poly(methylmethacrylate) (PMMA) and carboxymethylcellulose (CMC) was investigated by means of spectrophotometry. Dispersions of PMMA/CMC particles were characterized by light scattering, zeta potential measurements and scanning electron microscopy before and after HRP adsorption. HRP adsorbed irreversibly onto PMMA/CMC particles; the adsorption isotherm showed an initial step and an adsorption plateau.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: