Publications by authors named "Denise Escalier"

The decapitated sperm defect is a rare type of teratozoospermia responsible for male infertility. Spermatozoa from patients affected by this syndrome are used for intracytoplasmic sperm injection (ICSI) although little is known about their DNA integrity. This study evaluated sperm nuclear alterations in four patients and ten fertile men (control group).

View Article and Find Full Text PDF
Article Synopsis
  • * In a study of 20 North African men facing primary infertility due to sperm motility issues, 28% had a specific genetic mutation in the DNAH1 gene, which is important for sperm flagella function.
  • * Testing confirmed that the DNAH1 mutation led to the absence of both the mRNA and protein in one subject, causing significant structural defects in sperm, while infertility was the only notable symptom, indicating a less critical role of DNAH1 in other ciliated cells.
View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) is present in mature sperm and is required for sperm motility and capacitation. Both these processes are controlled by ions fluxes and are essential for fertilization. We have shown that SLC26A8, a sperm-specific member of the SLC26 family of anion exchangers, associates with the CFTR channel and strongly stimulates its activity.

View Article and Find Full Text PDF

Primary ciliary dyskinesia (PCD) is a group of autosomal-recessive disorders resulting from cilia and sperm-flagella defects, which lead to respiratory infections and male infertility. Most implicated genes encode structural proteins that participate in the composition of axonemal components, such as dynein arms (DAs), that are essential for ciliary and flagellar movements; they explain the pathology in fewer than half of the affected individuals. We undertook this study to further understand the pathogenesis of PCD due to the absence of both DAs.

View Article and Find Full Text PDF

Background: CCDC39 and CCDC40 genes have recently been implicated in primary ciliary dyskinesia (PCD) with inner dynein arm (IDA) defects and axonemal disorganisation; their contribution to the disease is, however, unknown. Aiming to delineate the CCDC39/CCDC40 mutation spectrum and associated phenotypes, this study screened a large cohort of patients with IDA defects, in whom clinical and ciliary phenotypes were accurately described.

Methods: All CCDC39 and CCDC40 exons and intronic boundaries were sequenced in 43 patients from 40 unrelated families.

View Article and Find Full Text PDF

The assembly of sperm flagella involves specific components and processes that are still poorly defined. Several morphological defects of the different structures that compose the axoneme have been described and associated to human male infertility. These morphological defects can be classified in 15 main categories.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores whether heterozygous deletions and point mutations in the DPY19L2 gene contribute to cases of globozoospermia, a rare form of male infertility characterized by round-headed sperm lacking acrosomes.
  • Researchers identified two heterozygous deletions and three point mutations in the DPY19L2 gene among patients, confirming its significant role in globozoospermia and suggesting continued molecular diagnostics even without homozygous deletions.
  • The study involved 34 patients and utilized advanced genetic testing techniques to identify genetic alterations while ensuring no frequent non-pathological variations were mistaken for harmful mutations.
View Article and Find Full Text PDF

The annulus is an electron-dense ring structure connecting the midpiece and the principal piece of the mammalian sperm flagellum. Proteins from the septin family have been shown to localize to the annulus. A septin complex is assembled early in spermiogenesis with the cochaperone DNAJB13 and, in mature sperm, associates with Testis Anion Transporter 1; SLC26A8 (Tat1), a transmembrane protein of the SLC26 family.

View Article and Find Full Text PDF

Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD.

View Article and Find Full Text PDF

Cilia and flagella are evolutionarily conserved structures that play various physiological roles in diverse cell types. Defects in motile cilia result in primary ciliary dyskinesia (PCD), the most prominent ciliopathy, characterized by the association of respiratory symptoms, male infertility, and, in nearly 50% of cases, situs inversus. So far, most identified disease-causing mutations involve genes encoding various ciliary components, such those belonging to the dynein arms that are essential for ciliary motion.

View Article and Find Full Text PDF

Protein kinase CK2 is a serine/threonine kinase known to phosphorylate numerous substrates. CK2 is implicated in several physiologic and pathologic processes, particularly in cancer biology. CK2 is comprised of several subunits, including CK2alpha, CK2alpha' and CK2beta.

View Article and Find Full Text PDF

Infertility concerns a minimum of 70 million couples worldwide. An important proportion of cases is believed to have a genetic component, yet few causal genes have been identified so far. In a previous study, we demonstrated that a homozygous mutation (c.

View Article and Find Full Text PDF

The Slc26 family is a conserved family of anion transporters. In the human, their physiological relevance was highlighted with the discovery of pathogenic mutations in several Slc26 transporters that lead to distinctive clinical disorders (Pendred syndrome, deafness, diastrophic dysplasia, congenital chloride diarrhoea) that are related to the specific distribution of these genes. We previously identified TAT1 as a new family member (Slc26A8), very specifically expressed in male germ cells in both the human and the mouse.

View Article and Find Full Text PDF

Thioredoxins belong to a large family of enzymatic proteins that function as general protein disulfide reductases, therefore participating in several cellular processes via redox-mediated reactions. So far, none of the 18 members of this family has been involved in human pathology. Here we identified TXNDC3, which encodes a thioredoxin-nucleoside diphosphate kinase, as a gene implicated in primary ciliary dyskinesia (PCD), a genetic condition characterized by chronic respiratory tract infections, left-right asymmetry randomization, and male infertility.

View Article and Find Full Text PDF

Objective: To raise the possibility that a familial chromosomal translocation associated with teratozoospermia can disrupt a gene necessary for flagellum assembly.

Design: Case report.

Setting: University hospital.

View Article and Find Full Text PDF

Objective: The cause of the sperm motility impairment was investigated in infertile men.

Design: Case report.

Setting: University-based andrology laboratory.

View Article and Find Full Text PDF

Background: Severe sperm motility impairment results in human infertility, which can be overcome by ICSI. Whether some particular, possibly genetic, flagellar abnormalities can influence embryonic development is a matter of debate.

Methods: Analysis of ultrastructural flagellar abnormalities and ICSI outcomes with ejaculated spermatozoa in a series of 21 infertile patients with asthenozoospermic or dyskinetic spermatozoa due to a primary and specific flagellar abnormality was carried out.

View Article and Find Full Text PDF

To date, 21 knockout mouse models are known to bear specific anomalies of the sperm flagellum structures leading to motility disorders. In addition, genes responsible for flagellar defects of two well-known spontaneous mutant mice have recently been identified. These models reveal genetic factors, which are required for the proper assembly of the axoneme, the annulus, the mitochondrial sheath and the fibrous sheath.

View Article and Find Full Text PDF

Xlr and Xmr are sex-specific genes which are expressed during the meiotic prophase I in the mouse. In spermatocytes, XMR concentrates on the asynapsed regions of the XY chromosomes, suggesting that XMR plays a role in sex chromosome condensation and silencing. The present study shows that in the mouse, XMR also concentrates in the nucleolus which is closely associated with the XY chromosome pair.

View Article and Find Full Text PDF

Connexins form gap junction channels that allow intercellular communication between neighboring cells. Compelling evidence has revealed that Cx are tumor-suppressor genes and reduced Cx expression has been related with uncontrolled cell growth in tumors and transformed cells. In the present study, we addressed Cx transcriptional and posttranscriptional regulations during the earlier stage of testicular tumors confined to Leydig cells in a transgenic mice model.

View Article and Find Full Text PDF

Csnk2a2 encodes the CK2alpha'catalytic subunit of CK2 that is predominantly expressed in testis. Male mice in which Csnk2a2 has been disrupted were infertile and displayed oligozoospermia with an abnormal shape of the spermatid nucleus. In this study, Csnk2a2 null testes revealed extensive germ cell degenerative processes at all stages of spermatogenesis, including the first spermatogenesis wave.

View Article and Find Full Text PDF

Ube2b (yeast Ubc2b/Rad6 homolog) null mice were described previously. Ube2b encodes the murine ubiquitin conjugating enzyme mHR6B. Ube2b(-/-) mice were shown to present male infertility and their sperm head shape anomalies suggested that Ube2b may be involved in the replacement of nuclear proteins during spermatid chromatin condensation.

View Article and Find Full Text PDF

Disruption of Ube2b in the mouse has revealed that the regular and symmetric organization of the fibrous sheath of the sperm flagella is dependent on expression of the ubiquitin-conjugating enzyme UBE2B. These data could cast light on how a component of the ubiquitin-proteasome pathway participates in the assembly of flagellar periaxonemal structures. Data in the literature support the notion of involvement of ubiquitin-proteasome pathways in the assembly of cytoskeletal components in somatic cells.

View Article and Find Full Text PDF