Publications by authors named "Denise Dwyer"

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) regulate glucose and energy homeostasis. Targeting both pathways with GIP receptor (GIPR) antagonist antibody (GIPR-Ab) and GLP-1 receptor (GLP-1R) agonist, by generating GIPR-Ab/GLP-1 bispecific molecules, is an approach for treating obesity and its comorbidities. In mice and monkeys, these molecules reduce body weight (BW) and improve many metabolic parameters.

View Article and Find Full Text PDF

Heart failure with reduced ejection fraction (HFrEF) constitutes 50% of HF hospitalizations and is characterized by high rates of mortality. To explore the underlying mechanisms of HFrEF etiology and progression, we studied the molecular and cellular differences in four chambers of non-failing (NF, n = 10) and HFrEF (n = 12) human hearts. We identified 333 genes enriched within NF heart subregions and often associated with cardiovascular disease GWAS variants.

View Article and Find Full Text PDF

Cardiometabolic syndrome has become a global health issue. Heart failure is a common comorbidity of cardiometabolic syndrome. Successful drug development to prevent cardiometabolic syndrome and associated comorbidities requires preclinical models predictive of human conditions.

View Article and Find Full Text PDF

Romosozumab (EVENITY™ [romosozumab-aqqg in the US]) is a humanized monoclonal antibody that inhibits sclerostin and has been approved in several countries for the treatment of osteoporosis in postmenopausal women at high risk of fracture. Sclerostin is expressed in bone and aortic vascular smooth muscle (AVSM). Its function in AVSM is unclear but it has been proposed to inhibit vascular calcification, atheroprogression, and inflammation.

View Article and Find Full Text PDF

Antiresorptive agents, such as bisphosphonates and denosumab, are frequently used for the management of osteoporosis. Indeed, both medications decrease the risk of osteoporotic fractures; however, these medications are associated with rare but potentially severe side effects, such as osteonecrosis of the jaw (ONJ). ONJ, defined as an area of exposed bone in the maxillofacial region that lasts for 8 weeks, often presents with significant pain and infection and can lead to serious complications.

View Article and Find Full Text PDF

Serum calcium (Ca) is maintained in a narrow range through regulation of Ca metabolism in the intestine, kidney, and bone. Calcium is incorporated and resorbed from bone during bone remodeling via cellular processes as well as by exchange. Both routes contribute to calcium homeostasis.

View Article and Find Full Text PDF

Etelcalcetide, a novel peptide agonist of the calcium-sensing receptor, prevents vascular calcification in a rat model of renal insufficiency with secondary hyperparathyroidism. Vascular calcification occurs frequently in patients with chronic kidney disease (CKD) and is a consequence of impaired mineral homeostasis and secondary hyperparathyroidism (SHPT). Etelcalcetide substantially lowers parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) levels in SHPT patients on hemodialysis.

View Article and Find Full Text PDF

Sustained elevation of parathyroid hormone (PTH) is catabolic to cortical bone, as evidenced by deterioration in bone structure (cortical porosity), and is a major factor for increased fracture risk in chronic kidney disease (CKD). Etelcalcetide (AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces PTH levels in subtotal nephrectomized (Nx) rats and in hemodialysis patients with secondary hyperparathyroidism (SHPT) in clinical studies; however, effects of etelcalcetide on bone have not been determined. In a rat model of established SHPT with renal osteodystrophy, etelcalcetide or vehicle was administered by subcutaneous (s.

View Article and Find Full Text PDF

Results of prior studies suggest that fibroblast growth factor 21 (FGF21) may be involved in bone turnover and in the actions of peroxisome proliferator-activated receptor (PPAR) α and γ in mice. We have conducted independent studies to examine the effects of FGF21 on bone homeostasis and the role of FGF21 in PPARα and γ actions. High-fat-diet-induced obesity (DIO) mice were administered vehicle or recombinant human FGF21 (rhFGF21) intraperitoneally at 0 (vehicle), 0.

View Article and Find Full Text PDF

Osteonecrosis of the jaws (ONJ) is a significant complication of antiresorptive medications, such as bisphosphonates and denosumab. Antiresorptive discontinuation to promote healing of ONJ lesions remains highly controversial and understudied. Here, we investigated whether antiresorptive discontinuation alters ONJ features in mice, employing the potent bisphosphonate zoledronic acid (ZA) or the receptor activator of NF-κB ligand (RANKL) inhibitor OPG-Fc, utilizing previously published ONJ animal models.

View Article and Find Full Text PDF

The effects of up to 26 weeks of sclerostin antibody (Scl-Ab) treatment were investigated in ovariectomized (OVX) rats. Two months after surgery, 6-month-old osteopenic OVX rats were treated with vehicle or Scl-Ab (25 mg/kg, sc, one time per week) for 6, 12, or 26 weeks. In vivo dual-energy x-ray absorptiometry analysis demonstrated that the bone mineral density of lumbar vertebrae and femur-tibia increased progressively through 26 weeks of Scl-Ab treatment along with progressive increases in trabecular and cortical bone mass and bone strength at multiple sites.

View Article and Find Full Text PDF

Sclerostin (Scl) is an osteocyte protein that decreases bone formation, and its inhibition by neutralizing antibodies (Scl-Ab) increases bone formation, mass and strength. We investigated the effects of Scl-Ab in mature ovariectomized (OVX) rats with a mechanistic focus on longer-term responses of osteoclasts, osteoblasts and osteocytes. Four-month-old Sprague-Dawley rats had OVX or sham surgery.

View Article and Find Full Text PDF

Systemic administration of a sclerostin neutralizing antibody (Scl-Ab) has been shown to enhance fracture callus density and strength in several animal models. In order to further evaluate the potential of Scl-Ab to improve healing in a bone defect model,we evaluated Scl-Ab in a 3mm femoral defect in young male outbred rats. Scl-Ab was given either continuously for 6 or 12 weeks after surgery or with 2 weeks of delay for 10 weeks.

View Article and Find Full Text PDF

Objective: To test whether inhibition of sclerostin by a targeted monoclonal antibody (Scl-Ab) protects from bone and cartilage damage in inflammatory arthritis. Sclerostin is a potent inhibitor of bone formation and may be responsible for the low level of bone repair in patients with rheumatoid arthritis.

Methods: Human tumour necrosis factor transgenic mice (hTNFtg mice) developing inflammatory arthritis and local and bone loss were administered either vehicle, anti-TNF antibody, Scl-Ab, or a combination of both agents.

View Article and Find Full Text PDF

Sclerostin, a product of the SOST gene produced mainly by osteocytes, is a potent negative regulator of bone formation that appears to be responsive to mechanical loading, with SOST expression increasing following mechanical unloading. We tested the ability of a murine sclerostin antibody (SclAbII) to prevent bone loss in adult mice subjected to hindlimb unloading (HLU) via tail suspension for 21 days. Mice (n = 11-17/group) were assigned to control (CON, normal weight bearing) or HLU and injected with either SclAbII (subcutaneously, 25 mg/kg) or vehicle (VEH) twice weekly.

View Article and Find Full Text PDF

We examined age-related changes in biochemical markers and regulators of osteoblast and osteoclast activity in C57BL/6 mice to assess their utility in explaining age-related changes in bone. Several recently discovered regulators of osteoclasts and osteoblasts were also measured to assess concordance between their systemic levels versus their levels in marrow plasma, to which bone cells are directly exposed. MicroCT of 6-, 12-, and 24-month-old mice indicated an early age-related loss of trabecular bone volume and surface, followed by endocortical bone loss and periosteal expansion.

View Article and Find Full Text PDF

Sclerostin, the Wnt signaling antagonist encoded by the Sost gene, is secreted by osteocytes and inhibits bone formation by osteoblasts. Mechanical stimulation reduces sclerostin expression, suggesting that osteocytes might coordinate the osteogenic response to mechanical force by locally unleashing Wnt signaling. To investigate whether sclerostin downregulation is a pre-requisite for load-induced bone formation, we conducted experiments in transgenic mice (TG) engineered to maintain high levels of SOST expression during mechanical loading.

View Article and Find Full Text PDF

The physiological role of Dickkopf-1 (Dkk1) during postnatal bone growth in rodents and in adult rodents was examined utilizing an antibody to Dkk1 (Dkk1-Ab) that blocked Dkk1 binding to both low density lipoprotein receptor-related protein 6 (LRP6) and Kremen2, thereby preventing the Wnt inhibitory activity of Dkk1. Treatment of growing mice and rats with Dkk1-Ab resulted in a significant increase in bone mineral density because of increased bone formation. In contrast, treatment of adult ovariectomized rats did not appreciably impact bone, an effect that was associated with decreased Dkk1 expression in the serum and bone of older rats.

View Article and Find Full Text PDF

Clinical studies have revealed a blunting of the bone anabolic effects of parathyroid hormone treatment in osteoporotic patients in the setting of pre- or cotreatment with the antiresorptive agent alendronate (ALN). Sclerostin monoclonal antibody (Scl-Ab) is currently under clinical investigation as a new potential anabolic therapy for postmenopausal osteoporosis. The purpose of these experiments was to examine the influence of pretreatment or cotreatment with ALN on the bone anabolic actions of Scl-Ab in ovariectomized (OVX) rats.

View Article and Find Full Text PDF

Therapeutic enhancement of fracture healing would help to prevent the occurrence of orthopedic complications such as nonunion and revision surgery. Sclerostin is a negative regulator of bone formation, and treatment with a sclerostin monoclonal antibody (Scl-Ab) results in increased bone formation and bone mass in animal models. Our objective was to investigate the effects of systemic administration of Scl-Ab in two models of fracture healing.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the effects of sclerostin inhibition by treatment with a sclerostin antibody (Scl-AbII) on bone formation, bone mass, and bone strength in an aged, gonad-intact male rat model. Sixteen-month-old male Sprague-Dawley rats were injected subcutaneously with vehicle or Scl-AbII at 5 or 25 mg/kg twice per week for 5 weeks (9-10/group). In vivo dual-energy X-ray absorptiometry (DXA) analysis showed that there was a marked increase in areal bone mineral density of the lumbar vertebrae (L(1) to L(5) ) and long bones (femur and tibia) in both the 5 and 25 mg/kg Scl-AbII-treated groups compared with baseline or vehicle controls at 3 and 5 weeks after treatment.

View Article and Find Full Text PDF

Context: Intermittent PTH treatment stimulates bone formation, but the mechanism(s) of this effect remain unclear. Sclerostin is an inhibitor of Wnt signaling, and animal studies have demonstrated that PTH suppresses sclerostin production.

Objective: The objective of the study was to test whether intermittent PTH treatment of postmenopausal women alters circulating sclerostin levels.

View Article and Find Full Text PDF

Introduction: Rat adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) feature bone loss and systemic increases in TNFalpha, IL-1beta, and receptor activator of NF-kappaB ligand (RANKL). Anti-IL-1 or anti-TNFalpha therapies consistently reduce inflammation in these models, but systemic bone loss often persists. RANKL inhibition consistently prevents bone loss in both models without reducing joint inflammation.

View Article and Find Full Text PDF

Objective: To investigate the kinetics of bony spur formation and the relationship of bony spur formation to synovial inflammation and bone erosion in 2 rat arthritis models, and to address whether bony spur formation depends on the expression of tumor necrosis factor alpha (TNFalpha) or RANKL.

Methods: Analysis of the kinetics of synovial inflammation, bone erosion, osteoclast formation, and growth of bony spurs was performed in rat collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA). In addition, inhibition experiments were performed to assess whether inhibition of TNFalpha and RANKL by pegylated soluble TNF receptor type I (pegTNFRI) and osteoprotegerin (OPG), respectively, affected bony spur formation.

View Article and Find Full Text PDF

Orchiectomized (ORX) rats were used to examine the extent to which their increased bone resorption and decreased bone density might relate to increases in RANKL, an essential cytokine for bone resorption. Serum testosterone declined by >95% in ORX rats 1 and 2 weeks after surgery (p<0.05 versus sham controls), with no observed changes in serum RANKL.

View Article and Find Full Text PDF