Publications by authors named "Denise D Schmoyer"

Shewanellae are facultative gamma-proteobacteria whose remarkable respiratory versatility has resulted in interest in their utility for bioremediation of heavy metals and radionuclides and for energy generation in microbial fuel cells. Extensive experimental efforts over the last several years and the availability of 21 sequenced Shewanella genomes made it possible to collect and integrate a wealth of information on the genus into one public resource providing new avenues for making biological discoveries and for developing a system level understanding of the cellular processes. The Shewanella knowledgebase was established in 2005 to provide a framework for integrated genome-based studies on Shewanella ecophysiology.

View Article and Find Full Text PDF

Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study, we address the problem by a comparison of the physiological, metabolic, and genomic characteristics of 19 sequenced Shewanella species.

View Article and Find Full Text PDF

One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged "bait" proteins from a medium copy-number plasmid.

View Article and Find Full Text PDF

Affinity isolation of protein complexes followed by protein identification by LC-MS/MS is an increasingly popular approach for mapping protein interactions. However, systematic and random assay errors from multiple sources must be considered to confidently infer authentic protein-protein interactions. To address this issue, we developed a general, robust statistical method for inferring authentic interactions from protein prey-by-bait frequency tables using a binomial-based likelihood ratio test (LRT) coupled with Bayes' Odds estimation.

View Article and Find Full Text PDF