Publications by authors named "Denise C P B M van Barneveld"

Orienting responses to audiovisual events have shorter reaction times and better accuracy and precision when images and sounds in the environment are aligned in space and time. How the brain constructs an integrated audiovisual percept is a computational puzzle because the auditory and visual senses are represented in different reference frames: the retina encodes visual locations with respect to the eyes; whereas the sound localisation cues are referenced to the head. In the well-known ventriloquist effect, the auditory spatial percept of the ventriloquist's voice is attracted toward the synchronous visual image of the dummy, but does this visual bias on sound localisation operate in a common reference frame by correctly taking into account eye and head position? Here we studied this question by independently varying initial eye and head orientations, and the amount of audiovisual spatial mismatch.

View Article and Find Full Text PDF

A world-fixed sound presented to a moving head produces changing sound-localization cues, from which the audiomotor system could infer sound movement relative to the head. When appropriately combined with self-motion signals, sound localization remains spatially accurate. Indeed, free-field orienting responses fully incorporate intervening eye-head movements under open-loop localization conditions.

View Article and Find Full Text PDF

How does the visuomotor system decide whether a target is moving or stationary in space or whether it moves relative to the eyes or head? A visual flash during a rapid eye-head gaze shift produces a brief visual streak on the retina that could provide information about target motion, when appropriately combined with eye and head self-motion signals. Indeed, double-step experiments have demonstrated that the visuomotor system incorporates actively generated intervening gaze shifts in the final localization response. Also saccades to brief head-fixed flashes during passive whole-body rotation compensate for vestibular-induced ocular nystagmus.

View Article and Find Full Text PDF

We studied the influence of static head roll on the perceived auditory zenith in head-centred and world-centred coordinates. Subjects sat either upright, or with their head left/right rolled sideways by about 35° relative to gravity, whilst judging whether a broadband sound was heard left or right from the head-centred or world-centred zenith. When upright, these reference frames coincide.

View Article and Find Full Text PDF

When a sound is presented in the free field at a location that remains fixed to the head during whole-body rotation in darkness, it is heard displaced in the direction opposing the rotation. This phenomenon is known as the audiogyral illusion. Consequently, the subjective auditory median plane (AMP) (the plane where the binaural difference cues for sound localization are perceived to be zero) shifts in the direction of body rotation.

View Article and Find Full Text PDF