Publications by authors named "Denise Biagini"

Quantitative analysis of peptides in biological fluids offers a high diagnostic and prognostic tool to reflect the pathophysiological condition of the patient. Recently, methods based on liquid chromatography coupled with mass spectrometry (LC-MS) for the quantitative determination of intact peptides have been replacing traditionally used ligand-binding assays, which suffer from cross-reactivity issues. The use of "top-down" analysis of peptides is rapidly increasing since it does not undergo incomplete or non-reproducible digestion like "bottom-up" approaches.

View Article and Find Full Text PDF

Oxylipins are powerful signalling compounds derived from polyunsaturated fatty acids (PUFAs) and involved in regulating the immune system response. A mass spectrometry-based method was developed and validated for the targeted profiling of 52 oxylipins (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Organogenesis in the uterus occurs under low oxygen levels, but preterm birth exposes infants to high oxygen, which can harm organ development and lead to conditions like necrotizing enterocolitis.
  • The study investigates the role of the β3-adrenoreceptor (β3-AR) in protecting the ileum from damage caused by high oxygen levels in newborn rat pups, using a selective β3-AR agonist, BRL37344.
  • Results show that a 3 mg/kg dose of BRL37344 mitigates some harmful changes caused by hyperoxia, highlighting its potential as a therapeutic approach for addressing complications related to premature birth and excessive oxygen exposure.
View Article and Find Full Text PDF

Cardiometabolic diseases (CMDs) are interrelated and multifactorial conditions, including arterial hypertension, type 2 diabetes, heart failure, coronary artery disease, and stroke. Due to the burden of cardiovascular morbidity and mortality associated with CMDs' increasing prevalence, there is a critical need for novel diagnostic and therapeutic strategies in their management. In clinical practice, innovative methods such as epicardial adipose tissue evaluation, ventricular-arterial coupling, and exercise tolerance studies could help to elucidate the multifaceted mechanisms associated with CMDs.

View Article and Find Full Text PDF

We present an innovative, reliable, and antibody-free analytical method to determine multiple intact natriuretic peptides in human plasma. These biomolecules are routinely used to confirm the diagnosis and monitor the evolution of heart failure, so that their determination is essential to improve diagnosis and monitor the efficacy of treatment. However, common immunoassay kits suffer from main limitations due to high cross-reactivity with structurally similar species.

View Article and Find Full Text PDF

Over the last few decades, significant research efforts have been devoted to developing new cleaning systems aimed at preserving cultural heritage. One of the main objectives is to selectively remove aged or undesirable coatings from painted surfaces while preventing the cleaning solvent from permeating and engaging with the pictorial layers. In this work, we propose the use of electrospun polyamide 6,6 nonwovens in conjunction with a green solvent (dimethyl carbonate).

View Article and Find Full Text PDF

Oxylipins are important signalling compounds that are significantly involved in the regulation of the immune system and the resolution of inflammation. Lipid metabolism is strongly activated upon SARS-CoV-2 infection, however the modulating effects of oxylipins induced by different variants remain unexplored. Here, we compare the plasma profiles of thirty-seven oxylipins and four PUFAs in subjects infected with Wild-type, Alpha (B.

View Article and Find Full Text PDF

This paper describes the AEOLUS pilot study which combines breath analysis with cardiopulmonary exercise testing (CPET) and an echocardiographic examination for monitoring heart failure (HF) patients. Ten consecutive patients with a prior clinical diagnosis of HF with reduced left ventricular ejection fraction were prospectively enrolled together with 15 control patients with cardiovascular risk factors, including hypertension, type II diabetes or chronic ischemic heart disease. Breath samples were collected at rest and during CPET coupled with exercise stress echocardiography (CPET-ESE) protocol by means of needle trap micro-extraction and were analyzed through gas-chromatography coupled with mass spectrometry.

View Article and Find Full Text PDF

Climate change due to the continuous increase in the release of green-house gasses associated with anthropogenic activity has made a significant impact on the sustainability of life on our planet. Methane (CH) is a green-house gas whose concentrations in the atmosphere are on the rise. CH measurement is important for both the environment and the safety at the industrial and household level.

View Article and Find Full Text PDF

Variations in salivary short-chain fatty acids and hydroxy acids (e.g., lactic acid, and 3-hydroxybutyric acid) levels have been suggested to reflect the dysbiosis of human gut microbiota, which represents an additional factor involved in the onset of heart failure (HF) disease.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the leading cause of premature death and disability in humans and their incidence continues to increase. Oxidative stress and inflammation have been recognized as key pathophysiological factors in cardiovascular events. The targeted modulation of the endogenous mechanisms of inflammation, rather than its simple suppression, will become key in treating chronic inflammatory diseases.

View Article and Find Full Text PDF

A key issue in GCxGC-HRMS data analysis is how to approach large-sample studies in an efficient and comprehensive way. We have developed a semi-automated data-driven workflow from identification to suspect screening, which allows highly selective monitoring of each identified chemical in a large-sample dataset. The example dataset used to illustrate the potential of the approach consisted of human sweat samples from 40 participants, including field blanks (80 samples).

View Article and Find Full Text PDF

Microplastics and nanoplastics represent one of the major environmental issues nowadays due to their ubiquitous presence on Earth, and their high potential danger for living systems, ecosystems, and human life. The formation of both microplastics and nanoplastics strongly depends on both the type of pristine materials and the degradation processes related to biological and/or abiotic conditions. The aim of this study is to investigate the effect of two of the most relevant abiotic parameters, namely temperature and light, taken under direct control by using a Solar box, on five types of reference polymers: high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET).

View Article and Find Full Text PDF

Sepsis is defined as a systemic inflammatory dysfunction strictly associated with infectious diseases, which represents an important health issue whose incidence is continuously increasing worldwide. Nowadays, sepsis is considered as one of the main causes of death that mainly affects critically ill patients in clinical settings, with a higher prevalence in low-income countries. Currently, sepsis management still represents an important challenge, since the use of traditional techniques for the diagnosis does not provide a rapid response, which is crucial for an effective infection management.

View Article and Find Full Text PDF

Background: Several ABO blood groups have been associated with the likelihood of infection, severity, and/or outcome of COVID-19 in hospitalized cohorts, raising the hypothesis that anti-A isoagglutinins in non-A-group recipients could act as neutralizing antibodies against SARS-CoV-2.

Materials And Methods: We run live virus neutralization tests using sera from 58 SARS-CoV-2 seronegative blood donors (27 O-group and 31 A-group) negatives for SARS-CoV-2 IgG to investigate what degree of neutralizing activity could be detected in their sera and eventual correlation with anti-A isoagglutinin titers.

Results: We could not find clinically relevant neutralizing activity in any blood group, regardless of anti-isoagglutinin titer.

View Article and Find Full Text PDF

High-altitude locations are fascinating for investigating biological and physiological responses in humans. In this work, we studied the high-altitude response in the plasma and urine of six healthy adult trekkers, who participated in a trek in Nepal that covered 300 km in 19 days along a route in the Kanchenjunga Mountain and up to a maximum altitude of 5140 m. Post-trek results showed an unbalance in redox status, with an upregulation of ROS (+19%), NOx (+28%), neopterin (+50%), and pro-inflammatory prostanoids, such as PGE (+120%) and 15-deoxy-delta12,14-PGJ (+233%).

View Article and Find Full Text PDF

The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients.

View Article and Find Full Text PDF

The composition of exhaled breath derives from an intricate combination of normal and abnormal physiological processes that are modified by the consumption of food and beverages, circadian rhythms, bacterial infections, and genetics as well as exposure to xenobiotics. This complexity, which results wide intra- and inter-individual variability and is further influenced by sampling conditions, hinders the identification of specific biomarkers and makes it difficult to differentiate between pathological and nominally healthy subjects. The identification of a 'normal' breath composition and the relative influence of the aforementioned parameters would make breath analyses much faster for diagnostic applications.

View Article and Find Full Text PDF

Salivary microbiota, comprising bacteria shed from oral surfaces, has been shown to be individualized, temporally stable, and influenced by macronutrient intake and lifestyle. Nevertheless, the effect of long-term dietary patterns on oral microbiota composition and the relationship between oral microbiota composition and metabolic rate remains to be examined. Herein, salivary microbiota composition and metabolic profile were analyzed in human subjects with vegan (VEG) or Mediterranean (MED) long-term dietary patterns.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are an important factor in cancer progression and metastasis, especially gelatinases MMP-2 and MMP-9. A simple methodology for their detection and monitoring is highly desirable. Molecular probes have been very widely and successfully applied to study the activity of MMPs in cellular processes in vitro.

View Article and Find Full Text PDF

The rapid and selective identification in the clinical setting of pathogenic bacteria causing healthcare associated infections (HAIs) and in particular blood stream infections (BSIs) is a major challenge, as the number of people affected worldwide and the associated mortality are on the rise. In fact, traditional laboratory techniques such culture and polymerase chain reaction (PCR)-based methodologies are often associated to long turnaround times, which justify the pressing need for the development of rapid, specific and portable point of care devices. The recently discovered clustered regularly interspaced short palindromic repeat loci (CRISPR) and the new class of programmable endonuclease enzymes called CRISPR associated proteins (Cas) have revolutionised molecular diagnostics.

View Article and Find Full Text PDF

Notwithstanding its relatively recent discovery, graphene has gone through many evolution steps and inspired a multitude of applications in many fields, from electronics to life science. The recent advancements in graphene production and patterning, and the inclusion of two-dimensional (2D) graphenic materials in three-dimensional (3D) superstructures, further extended the number of potential applications. In this Review, we focus on laser-induced graphene (LIG), an intriguing 3D porous graphenic material produced by direct laser scribing of carbonaceous precursors, and on its applications in chemical sensors and biosensors.

View Article and Find Full Text PDF

Heart failure (HF) is the main cause of mortality worldwide, particularly in the elderly. N-terminal pro-brain natriuretic peptide (NT-proBNP) is the gold standard biomarker for HF diagnosis and therapy monitoring. It is determined in blood samples by the immunochemical methods generally adopted by most laboratories.

View Article and Find Full Text PDF

COVID-19 is a highly transmissible respiratory illness that has rapidly spread all over the world causing more than 115 million cases and 2.5 million deaths. Most epidemiological projections estimate that the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus causing the infection will circulate in the next few years and raise enormous economic and social issues.

View Article and Find Full Text PDF

Breath analysis is an alternative approach for disease diagnosis and for monitoring therapy. The lack of standardized procedures for collecting and analysing breath samples currently limits its use in clinical practice. In order to overcome this limitation, the 'Peppermint Consortium' was established within the breath community to carry out breath wash-out experiments and define reference values for a panel of compounds contained in the peppermint oil capsule.

View Article and Find Full Text PDF