Publications by authors named "Denise Bamberger"

In photodynamic therapy (PDT), photosensitizers and light are used to cause photochemically induced cell death. The selectivity and the effectiveness of the phototoxicity in cancer can be increased by a specific uptake of the photosensitizer into tumor cells. A promising target for this goal is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake.

View Article and Find Full Text PDF

Therapeutic vaccination is and remains a major challenge, particularly in cancer treatment. In this process, the effective activation of dendritic cells by a combination of distinctly acting adjuvants and an antigen is crucial for success. While most common vaccine formulations lack the efficiency to trigger sufficient T cell responses in a therapeutic tumor treatment, nanovaccines offer unique properties to tackle that challenge.

View Article and Find Full Text PDF

Surface modifications of nanoparticles can alter their physical and biological properties significantly. They effect particle aggregation, circulation times, and cellular uptake. This is particularly critical for the interaction with primary immune cells due to their important role in particle processing.

View Article and Find Full Text PDF

Aim: Evaluation of dextran-based nanoparticles (DNP) as a drug delivery system to target myeloid cells of the liver.

Materials & Methods: DNP were synthesized and optionally PEGylated. Their toxicity and cellular uptake were studied in vitro.

View Article and Find Full Text PDF

We propose a structure-based protocol for the development of customized covalent inhibitors. Starting from a known inhibitor, in the first and second steps appropriate substituents of the warhead are selected on the basis of quantum mechanical (QM) computations and hybrid approaches combining QM with molecular mechanics (QM/MM). In the third step the recognition unit is optimized using docking approaches for the noncovalent complex.

View Article and Find Full Text PDF

Buruli ulcer is a neglected disease caused by Mycobacterium ulcerans and represents the world's third most common mycobacterial infection. It produces the polyketide toxins, mycolactones A, B, C and D, which induce apoptosis and necrosis. Clinical symptoms are subcutaneous nodules, papules, plaques and ulcerating oedemae, which can enlarge and destroy nerves and blood vessels and even invade bones by lymphatic or haematogenous spread (osteomyelitis).

View Article and Find Full Text PDF