Publications by authors named "Denise Aumer"

The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects.

View Article and Find Full Text PDF

The genome of the western honeybee () harbors nine transcribed genes () which originate from a single-copy precursor via gene duplication. The first MRJP was identified in royal jelly, a secretion of the bees' hypopharyngeal glands that is used by young worker bees, called nurses, to feed developing larvae. Thus, MRJPs are frequently assumed to mainly have functions for developing bee larvae and to be expressed in the food glands of nurse bees.

View Article and Find Full Text PDF

The evolution of altruism in complex insect societies is arguably one of the major transitions in evolution and inclusive fitness theory plausibly explains why this is an evolutionary stable strategy. Yet, workers of the South African Cape honey bee (Apis mellifera capensis) can reverse to selfish behavior by becoming social parasites and parthenogenetically producing female offspring (thelytoky). Using a joint mapping and population genomics approach, in combination with a time-course transcript abundance dynamics analysis, we show that a single nucleotide polymorphism at the mapped thelytoky locus (Th) is associated with the iconic thelytokous phenotype.

View Article and Find Full Text PDF

Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring.

View Article and Find Full Text PDF

Honey bees (Apis mellifera) are the best studied model of ageing among the social insects. As in other social insects, the reproductive queen far outlives her non-reproductive workers despite developing from the same genome in the same colony environment. Thus, the different social roles of the two female castes are critical for the profound phenotypic plasticity.

View Article and Find Full Text PDF