Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications.
View Article and Find Full Text PDFThis review focuses on the synthesis and biological activity of flavones and their related flavonoidic compounds, namely flavonols and aurones. Among the biological activities of natural and synthetic flavones and aurones, their anticancer, antioxidant, and antimicrobial properties are highlighted and detailed in this review. Starting from the structures of natural flavones acting on multiple anticancer targets (myricetin, genkwanin, and other structurally related compounds), new flavone analogs were recently designed and evaluated for their anticancer activity.
View Article and Find Full Text PDFReversed-phase thin-layer chromatography and reversed-phase high-performance liquid chromatography were used for lipophilicity determination of a library of 30 thiazole chalcones and aurones previously synthetized in our laboratory. The experimental lipophilicity data have been compared with theoretical lipophilicity parameters estimated by various computational methods. Good correlations between the experimental and calculated lipophilicity parameters have been found for both investigated classes of compounds.
View Article and Find Full Text PDFNon-steroidal anti-inflammatory drugs (NSAIDs) are an important pharmacological class of drugs used for the treatment of inflammatory diseases. They are also characterized by severe side effects, such as gastrointestinal damage, increased cardiovascular risk and renal function abnormalities. In order to synthesize new anti-inflammatory and analgesic compounds with a safer profile of side effects, a series of 2,6-diaryl-imidazo[2,1-][1,3,4]thiadiazole derivatives ⁻ were synthesized and evaluated in vivo for their anti-inflammatory and analgesic activities in carrageenan-induced rat paw edema.
View Article and Find Full Text PDFIn this paper we describe the chemoenzymatic synthesis of enantiopure l-2-arylthiazol-4-yl alanines starting from their racemic N-acetyl derivatives; by combining the lipase-catalysed dynamic kinetic resolution of oxazol-5(4H)-ones with a chemical and an enzymatic enantioselective hydrolytic step affording the desired products in good yields (74%-78%) and high enantiopurities (ee > 99%). The developed procedure exploits the utility of the single-walled carbon nanotubes-bound diethylaminoethanol as mild and efficient racemisation agent for the dynamic kinetic resolution of the corresponding oxazolones.
View Article and Find Full Text PDFThis paper describes the biocatalytic synthesis of new Mannich bases containing various heterocyclic rings (thiazole, furane, thiophene, pyridine) by applying the lipase catalyzed trimolecular condensation of the corresponding heterocyclic aldehydes with acetone and primary aromatic amines, in mild and eco-friendly reaction conditions. The obtained Mannich bases were acylated to their corresponding N-acetyl derivatives. All compounds were characterized by 1H-NMR, 13C-NMR and MS spectrometry.
View Article and Find Full Text PDF