Publications by authors named "Denisa Jamecna"

Functionalized lipid analogs are a versatile tool for studying lipid localization, metabolism and interactions in cells. As a common follow-up research, in vitro experiments are utilized to confirm specific interactors and characterize protein-lipid interactions. Here, we describe protocols that rely on commercially available photoactivatable and clickable lipids in reconstituted systems to capture protein-lipid interactions and detect lipid transport between purified proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The Niemann-Pick type C (NPC) system in eukaryotes facilitates the integration of sterols into the vacuolar/lysosomal membrane, relying on the integral protein NCR1 and the soluble NPC2 protein for sterol transfer.
  • Research shows that the N-terminal domain (NTD) of NCR1 can bind various lipids including ergosterol, cholesterol, and several fluorescent analogs of lipid species like phosphatidylinositol and sphingosine.
  • The study further demonstrates the versatility of the NCR1/NPC2 system in yeast, highlighting its role in the transport and homeostasis of multiple lipids in addition to ergosterol.
View Article and Find Full Text PDF

Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems.

View Article and Find Full Text PDF

Sphingolipids are important structural components of membranes. Additionally, simple sphingolipids such as sphingosine are highly bioactive and participate in complex subcellular signaling. Sphingolipid deregulation is associated with many severe diseases including diabetes, Parkinson's and cancer.

View Article and Find Full Text PDF

Membrane contact sites (MCS) are regions of close apposition between membrane-bound organelles. Proteins that occupy MCS display various domain organisation. Among them, lipid transfer proteins (LTPs) frequently contain both structured domains as well as regions of intrinsic disorder.

View Article and Find Full Text PDF

Lipid transfer proteins (LTPs) acting at membrane contact sites (MCS) between the ER and other organelles contain domains involved in heterotypic (e.g., ER to Golgi) membrane tethering as well as domains involved in lipid transfer.

View Article and Find Full Text PDF

The network of proteins that orchestrate the distribution of cholesterol among cellular organelles is not fully characterized. We previously proposed that oxysterol-binding protein (OSBP) drives cholesterol/PI4P exchange at contact sites between the endoplasmic reticulum (ER) and the -Golgi network (TGN). Using the inhibitor OSW-1, we report here that the sole activity of endogenous OSBP makes a major contribution to cholesterol distribution, lipid order, and PI4P turnover in living cells.

View Article and Find Full Text PDF

The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells.

View Article and Find Full Text PDF