Publications by authors named "Denis Zhirov"

The paper provides new insights into the structure of Pt-containing diblock and triblock copolymers based on poly(ethylene oxide) (PEO) and poly(4-vinylpyridine) (P4VP), using a combination of atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and anomalous small-angle X-ray scattering (ASAXS). Parallel studies using methods contributing supplemental structural information allowed us to comprehensively characterize sophisticated polymer systems during metalation and to exclude possible ambiguity of the data interpretation of each of the methods. AFM and TEM make available the determination of sizes of the micelles and of the Pt-containing micelle cores, respectively, while a combination of XRD, TEM, and ASAXS reveals Pt-nanoparticle size distributions and locations along with the structural information about the polymer matrix.

View Article and Find Full Text PDF

Dynamic light scattering, potentiometric titration, transmission electron microscopy and atomic force microscopy have been used to investigate the micellar behaviour and metal-nanoparticle formation in poly(ethylene oxide)-block-poly(2-vinylpyridine), PEO-b-P2VP, poly(hexa(ethylene glycol) methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate), PHEGMA-b-PDEAEMA, and PEO-b-PDEAEMA amphiphilic diblock copolymers in water. The hydrophobic block of these copolymers (P2VP or PDEAEMA) is pH-sensitive: at low pH it can be protonated and becomes partially or completely hydrophilic leading to molecular solubility whereas at higher pH micelles are formed. These micelles consist of a P2VP or PDEAEMA core and a PEO or PHEGMA corona, respectively, where the core forming amine units can incorporate metal compounds due to coordination.

View Article and Find Full Text PDF