Publications by authors named "Denis Zeyer"

For the sake of energy preservation, bacteria, upon transition to stationary phase, tone down their protein synthesis. This process is favored by the reversible binding of small stress-induced proteins to the ribosome to prevent unnecessary translation. One example is the conserved bacterial ribosome silencing factor (RsfS) that binds to uL14 protein onto the large ribosomal subunit and prevents its association with the small subunit.

View Article and Find Full Text PDF

Evidencing subtle conformational transitions in proteins occurring upon small modulator binding usually requires atomic resolution techniques (X-ray crystallography or NMR). Recently, hyphenation of ion mobility and mass spectrometry (IM-MS) has greatly enlarged the potentials for biomolecular assembly structural characterization. Using the well 3D-characterized Bcl-xL/ABT-737 protein model, we explored in the present report whether IM-MS can be used to differentiate close conformers and monitor collision cross section (CCS) differences correlating with ligand-induced conformational changes.

View Article and Find Full Text PDF

Aims: We have developed biochemical and cell based assays to characterize small therapeutic molecules that inhibit the DNA damage checkpoint enzyme, Chk1 (Checkpoint kinase 1).

Main Methods: To prepare a screen of large chemical libraries, we purified the full-length and the catalytic domain versions of human Chk1. We characterized their properties and then selected full-length Chk1 as the variant most suitable for screening.

View Article and Find Full Text PDF

Retinoids regulate gene expression through binding to the nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). In contrast, no ligands for the retinoic acid receptor-related orphan receptors beta and gamma (ROR beta and gamma) have been identified, yet structural data and structure-function analyses indicate that ROR beta is a ligand-regulated nuclear receptor. Using nondenaturing mass spectrometry and scintillation proximity assays we found that all-trans retinoic acid (ATRA) and several retinoids bind to the ROR beta ligand-binding domain (LBD).

View Article and Find Full Text PDF